浅谈数字示波器的死区时间

发布者:创意驿站最新更新时间:2014-09-15 来源: ednchina关键字:SDS2000  数字示波器  死区时间 手机看文章 扫描二维码
随时随地手机看文章
随着科学技术的发展,数字示波器也越来越先进,而波形刷新率逐渐成为了数字示波器中仅次于带宽、采样率、存储深度之后的第四大技术指标。说到波形刷新率的意义就和死区时间息息相关了。

何为死区时间?死区时间是数字示波器与生俱来的一个缺陷,目前阶段是无法消除的,只能够尽力减小。不同于模拟示波器采用电子束直接打在荧光屏上的显示模式,数字示波器是一个典型的“前端数据采集+后端数字信号处理”系统。这样的系统都有这样一个特点:前端数据采集系统ADC的输出数据吞吐量比后端数字信号处理系统的处理能力大很多,这就意味着后端无法“实时”处理前端输出的数据,从而形成“死区”时间。 例如:SIGLENT(鼎阳科技)最新的数字示波器SDS2000系列的ADC采样率为2GSa/S,即每秒输出2G个数据,但后续数字信号处理器每秒处理、显示波形的能力只能达到几百兆点每秒,也就是说处理器1秒只能够处理采集到的几百兆个点,剩下的数据都被丢弃,被丢弃的这些数据就是死区时间。

如图一所示,


图一

图上为一个波形捕获周期的示意图。捕获周期长度由有效捕获时间和死区时间组成。在有效捕获时间内,数字示波器按照用户设定的采样率进行捕获,并将其写入RAM中。死区时间可分为固定死区时间和变动死区时间两部分。固定死区时间具体取决于当前数字示波器自身的情况,如FPGA/DSP等芯片的计算速率以及算法构架等。变动死区时间则取决于处理ADC采集到的数据所需的时间,它与设定的存储深度(记录长度)、时基、采样率以及所选后处理功能(例如,插值、数学函数、测量和分析)多少都有直接关系,所以这部分的死区时间是变动的。

在数字示波器的众多参数中对死区时间的影响最大的就是波形刷新率。顾名思义,波形刷新率指的就是数字示波器单位时间能够显示波形的数量。下面给出一个计算死区时间的公式:

死区时间%=[100×(1-波形刷新率×时基×水平格数)]%

如此便可得到一台数字示波器真正能够捕获到信号的有效时间为:

有效时间%=100%-死区时间%

有了这个公式,我们就能够进行一个大致的计算,以SIGLENT(鼎阳科技)最新的SDS2000系列超级荧光示波器为例,该产品目前波形刷新率能够达到110,000wfm/s,屏幕水平格数为14格。假如当我们设定时基为50us时刷新率达到最大,由此计算死区时间为77%,也就是说有效时间为23%。

而传统的数字示波器的波形刷新率大多为2000左右,我们同样以SIGLENT的SDS1000L系列为例,波形刷新率2000,时基50us,水平格数为18格,得出死区时间:98.2%,有效时间为1.8%。由此可看出SDS2000系列的高刷新率数字示波器在捕获信号方面的能力比SDS1000L系列强出很多。

但是由于变动死区时间的存在,不同时基下刷新率不一样,存储深度也不一样,所以具体的死区时间还需进一步详细分析计算。


图二

图二是一张用SIGLENT研发的SDS2000系列在异常信号捕获上的实例图,理论上来说数字示波器波形捕获率越高,则捕获到异常信号的速度越快、成功率越高,但是并不一定说数字示波器波形捕获率高就一定能捕获到异常信号,捕获率低就一定捕获不到。

关键字:SDS2000  数字示波器  死区时间 引用地址:浅谈数字示波器的死区时间

上一篇:实时示波器和采样示波器的区别是什么
下一篇:示波器的原理及基本组成

推荐阅读最新更新时间:2024-03-30 22:47

罗德施瓦茨推出全新 RTO2000 数字示波器
电子设计的开发人员希望通过一款功能强大、支持多用途和结果直观显示的实验室示波器来快速准确地完成复杂的测试任务。罗德与施瓦茨公司全新一代R&S RTO2000系列数字示波器满足了这一期望。 2016年2月23日,慕尼黑 ― 罗德与施瓦茨公司推出了支持多域分析的R&S RTO2000系列高性能数字示波器。开发人员可以利用其完成对高级嵌入式系统的设计验证,分析包括电源、微处理器系统、RF单元以及传感器等不同功能子系统之间的相互作用。R&S RTO2000可以实现其他传统示波器无法完成的时域、频域、协议层和逻辑分析测试结果的关联显示和多域分析。 通过同一模拟输入通道,用户能够同时测量信号的时域和频域结果。如果需
[测试测量]
罗德施瓦茨推出全新 RTO2000 <font color='red'>数字示波器</font>
数字示波器百问(八)
71. 开关电源输出电压的纹波是一个重要的指标,如何正确使用示波器来测量这个指标? 答:纹波的定义是附着于直流电平之上的包含周期性与随机性成分的杂波信号,英文称为 PARD (Periodic And Random Deviation)。它的定义是杂波的峰峰值。测量纹波要注意的事项: 示波器探头地线会带来很大纹波,应该拔掉地线直接使用探头内地线进行测量。当然,最好的测量方法是使用50欧姆终端电阻,用BNC电缆直接联结到示波器,这里应该注意该50欧姆电阻要考虑功耗,可能要大功率电阻。相关的标准要求,比如是否要分出周期性工频纹波和开关纹波,高频噪声等。再比如,测量频率是否要限制在20MHz以下。 72. 测纹波时有很大一部分是50赫兹
[测试测量]
数字示波器
数字示波器是数据采集,A/D转换,软件编程等一系列的技术制造出来的高性能 示波器 。数字示波器一般支持多级菜单,能提供给用户多种选择,多种分析功能。还有一些示波器可以提供存储,实现对波形的保存和处理。目前高端数字示波器主要依靠美国技术,对于300MHz带宽之内的示波器,目前国内品牌的示波器在性能上已经可以和国外品牌抗衡,且具有明显的性价比优势。 简介 数字示波器,英文:Digital Oscilloscope 数字示波器是设计、制造和维修电子设备不可或缺的工具。随着科技及市场需求的快速发展,工程师们需要最好的工具,迅速准确地解决面临的测量挑战。作为工程师的眼睛,数字示波器在迎接当前棘手的测量挑战中至关重要。
[测试测量]
关于数字示波器的测量
数字示波器(DSO)与模拟示波器相比有许多明显的优势。数字示波器可以采样、数字化和存储波形,帮助你测量、分析和存档信号。但采样过程随之也会带来诸多问题。 混叠、同步采样和插值器错误会让你错误理解测量结果,除非你很清楚这些问题。正如你想到的那样,大多数数字示波器制造商不会花很多时间来讨论负面问题,因此了解这些问题是一种探索性体验。下面我们来探讨一下这些问题,同时看看如何检测并解决这些问题。 混叠 根据所有数字仪器和系统都应遵循的采样理论,对一个信号的采样率必须超过该信号中所包含的最大频率的两倍。如果信号被正确采样,示波器就可以从样本中重建这个信号,不会损失任何信息。在欠采样情况下,或者说采样率小于信号最高频率分量两倍时,恢复
[测试测量]
普源数字示波器MSO8104的技术参数
产品介绍: MSO8000系列数字示波器是基于RIGOL自主知识产权的ASIC芯片和UltraVisionII技术平台的中高端混合信号数字示波器。MSO8000系列模拟通道带宽高达2 GHz,集7种仪器于一身,具有500 Mpts超大存储深度、良好的波形显示效果、优异的波形捕获率和强大的数据分析功能,并且支持实时眼图测量和抖动分析,为客户提供更优的测试解决方案。 产品特点: 1.MSO8000系列数字示波器为您提供最高2GHz模拟带宽和10 GSa/s采样率。低带宽型号随时可通过软件将带宽升级到2 GHz(单通道和半通道模式),可以确保您以最经济的方式拥有更高的信号保真度和低至100 ps的分辨率(最小时基下可达到2 ps),
[测试测量]
普源<font color='red'>数字示波器</font>MSO8104的技术参数
数字示波器选择时要考虑的几个因素
  数字示波器是一种通用测试仪表,本质上是一种图形显示设备,相当于具有图形显示的电压表或万用表,能在屏幕上直观的显示信号随时间变化的波形,并对波形的周期、电压、频率等参数进行测量和分析,广泛应用于科研、生产等各个领域,是工程师设计,调试,维修产品时的主要测试仪表,对测试工作起着举足轻重的作用。 泰克示波器 ,全球示波器领跑者。      很多工程师在使用数字示波器时,都会遇到这样一些问题:用计量合格的数字示波器测得的信号幅度和频率等数据有时会与信号本身设计值相差很远,于是就去找电路的问题,但费时费力后,却一无所获,不知问题出在哪里。此外,对于同一信号,使用不同数字示波器测得的结果却不相同。      产生这些问题的原因与数字示波器的
[测试测量]
<font color='red'>数字示波器</font>选择时要考虑的几个因素
IVI技术和数据库技术实现数字示波器的自动检定方案
随着电子技术的发展,数字示波器凭借数字技术和软件大大扩展了工作能力,早期产品的取样率低、存在较大死区时间、屏幕刷新率低等不足得到较大改善,以前难以观察的调制信号、通讯眼图、视频信号等复合信号越来越容易观察。 数字示波器可以对数据进行运算和分析,特别适合于捕获复杂动态信号中产生的全部细节和异常现象,因而在科学研究、工业生产中得到了广泛的应用。 为了让示波器工作在合格的状态,对示波器定期、快速、全面的检定,保证其量值溯源,是摆在测试工程师面前的一项紧迫任务。 手工检定效率低,容易出错,对每一种示波器的检定需要测试工程师翻阅大量的资料;自动测试系统具有准确快速地测量参数、直观地显示测试结果、自动存储测试数据等特性,是传统的手
[测试测量]
IVI技术和数据库技术实现<font color='red'>数字示波器</font>的自动检定方案
一种数字示波器的微处理器硬件设计
        引言   随着通信技术的迅猛发展,电信号越来越复杂化和瞬态化,开发人员对测量领域必不可少的工具——数字示波器的性能提出了越来越高的要求。最大限度提高实时采样率和波形捕获能力成为了国内外众多数字示波器生产厂商研究的重点,实时采样率和波形捕获率的提高又必然带来大量高速波形数据的传输、保存和处理的问题。因此,作为数字示波器数据处理和系统控制的中枢,微处理器性能至关重要。本文选用TI公司的双核 DSP OMAP-L138作为本设计的微处理器,并实现了一种数字示波器微处理器硬件设计。    数字示波器的基本架构   目前数字示波器多采用DSP、内嵌微处理器型FPGA或微处理器+FPGA架构。虽然内嵌微处理器型FP
[嵌入式]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved