一种数字示波器的微处理器硬件设计

发布者:笑脸猫最新更新时间:2010-10-19 关键字:数字示波器  微处理器  硬件设计 手机看文章 扫描二维码
随时随地手机看文章

        引言

  随着通信技术的迅猛发展,电信号越来越复杂化和瞬态化,开发人员对测量领域必不可少的工具——数字示波器的性能提出了越来越高的要求。最大限度提高实时采样率和波形捕获能力成为了国内外众多数字示波器生产厂商研究的重点,实时采样率和波形捕获率的提高又必然带来大量高速波形数据的传输、保存和处理的问题。因此,作为数字示波器数据处理和系统控制的中枢,微处理器性能至关重要。本文选用TI公司的双核 DSP OMAP-L138作为本设计的微处理器,并实现了一种数字示波器微处理器硬件设计。

  数字示波器的基本架构

  目前数字示波器多采用DSP、内嵌微处理器型FPGA或微处理器+FPGA架构。虽然内嵌微处理器型FPGA灵活性强,可以充分进行设计开发和验证,便于系统升级且FPGA外围电路简单。但是该类型FPGA属于高端FPGA,价高且供货渠道难得,不适合低成本的数字示波器使用。若单独使用DSP,虽然其数据处理能力强大,运行速度较高,但DSP的控制能力不突出,且数字示波器的采样率越来越高,DSP内部不能做数据流降速和缓存,当设计采用高实时采样率的 ADC,就得选用频率更高且内部存储资源更丰富的DSP,而此类DSP一般都价格昂贵,同样不适合低成本的数字示波器使用。因此,微处理器+FPGA架构的方案是本设计首选。微处理器+FPGA架构的数字示波器的系统结构图如图1所示:

                                                 图1 微处理器+FPGA架构的数字示波器系统结构图

  被测信号经模拟通道运放调理后送到ADC器件;ADC转换器将输入端的信号转换成相应的数字信号并经过FPGA缓存和预处理;微处理器对采样得到的数字信号进行相关处理与运算;最后将波形送到屏幕上显示,完成一次采集过程。同时采集过程中触发电路不断监测输入信号,看是否出现触发状态,触发条件决定了波形的起始位置,触发系统能够保证被测波形能够稳定的显示到屏幕上。

  微处理器选型

  本设计实时采样率高达2Gsps,需要微处理器实时处理的波形数据量很大。同时微处理器要实现模拟通道控制、高速ADC采样控制、波形数据存储控制、LCD显示控制等。因此兼具强大的数据处理能力和优异控制能力的微处理器成为本设计首选。

  基于这些要求,本设计选择了TI公司的OMAP- L138 DSP。此芯片是TI公司2009年推出的一款高性能处理器芯片。该芯片特点如下:

  1、采用C6748 DSP内核与ARM9内核的双核结构,可实现高达300 MHz的单位内核频率。利用片上ARM9,开发人员可充分利用DSP内核支持高强度的实时处理计算,同时让ARM负责非实时任务。

  2、丰富的内部存储器资源。其中ARM核内部有16KB的L1程序Cache和16KB的数据Cache;DSP核采用二级缓存结构,包括32KB 的L1程序Cache、32KB 的数据Cache和256KB 的L2统一映射SRAM,该二级高速缓存结构可以为所有载入、存储以及处理请求提供服务,可以为CPU提供高效、高速的数据共享;此外在ARM核与DSP 核之间还有高达128KB的片上RAM,可被ARM核、DSP核以及片外存储器访问。

  3、丰富的外设资源。主要包括1个EMIFA口,可接16bit SDRAM或者NOR/NAND Flash;1个EMIFB口,可接16bit的DDR2(最高频率150MHz)或16bit mDDR (最高频率133MHz);3个UART接口;2个SPI接口;2个I2C接口;1个EMAC控制器;1个USB2.0接口和1个USB1.1接口;1个 LCD控制器;1个SATA控制器;1个uPP接口;1个VPIF接口;4个64位通用定时器。丰富的外设资源不仅可以为示波器提供与PC机、便携式 USB接口设备通信的接口,而且极大减少DSP外围电路的设计规模,

  4、低功耗。采用1.2V内核电压,1.8V或3.3V I/O接口电压,在深度睡眠模式下功耗仅有6mW,正常工作模式下功耗约为420mW。

  此外OMAP-L138为浮、定点兼容DSP,使用硬件来完成浮点运算,可以在单周期内完成,这一优点在实现高精度复杂算法时尤为突出,为复杂算法的实时处理提供了保证。OMAP-L138还可与C6748 DSP实现引脚对引脚兼容,从而使客户可采用不同的处理器同时开发多种不同特性的产品。

  数字示波器系统硬件结构设计

  本设计ADC选用Atmel公司的AT84AD001,该芯片有两个通道,每个通道采样率高达1Gsps,拼合可实现2Gsps的实时采样率;FPGA选用 Xilinx公司Spartan-3A系列的XC3S400A芯片,该芯片内有8064个逻辑单元,360Kbit块RAM,56Kbit分布式 RAM,4个数字时钟管理模块(DCM),311个I/O口。300KB容量的SRAM芯片外挂在FPGA上作深存储用,由于SRAM存储器容量比 FPGA内部缓存FIFO大得多,能够存储更多的波形数据,因而能观察到更多的波形细节。采用64Mbit容量的SPI Flash存储示波器掉电需要保存的数据,例如程序代码、Boot loader程序、中英文字库、开机画面等。

        基于OMAP-L138的示波器硬件系统结构图如图2所示:

                                                        图2 数字示波器系统结构图

  本设计中,被测信号进入模拟通道调理后送入ADC,ADC对模拟信号采样、量化后,进入FPGA数据流降速和数据同步处理,然后根据存储深度要求选择存入 FPGA内部FIFO或者存入片外SRAM,待FPGA内部FIFO或者片外SRAM满标志有效后,DSP读取采样数据存入DDR2 SDRAM,并完成一系列复杂的处理和运算,如FFT、插值和滤波等,再存入在DDR2内拓展的显示存储区,待需要显示时再由DSP读取显存中的数据通过内部集成的LCD控制器采用DMA方式将数据送到LCD显示,完成一次采集过程。

  OMAP-L138与DDR2的接口电路设计

  OMAP- L138内部集成的DDR2/Mobile DDR控制器可外接工作频率150MHz的DDR2 SDRAM或者工作频率133MHz的Mobile DDR。本设计采用DDR2 SDRAM作为系统后级波形数据缓存器。较之SDRAM,DDR2 SDRAM不仅读写速度可大幅提高,存储容量更是得到极大扩展,示波器因而能够存储更多波形数据并观察到更多的波形细节,提高示波器对复杂信号和瞬态信号的捕获概率。本设计的DDR2 SDRAM选用镁光公司的DDR2 800内存颗粒,型号为MT47H64M16,容量为1Gbit,核心工作电压为1.8V,核心工作频率为400MHz,由于OMAP-L138内部的 DDR2控制器最高工作频率为150MHz,所以此系统中DDR2需要降频使用。OMAP-L138与DDR2的接口连接示意图如图3所示:

图3 OMAP-L38与DDR2的接口连接示意图

  DDR2 的信号线包括时钟、数据和命令三部分。本设计由DDR2控制器提供差分时钟CLK+和CLK-给DDR2,,差分时钟之间并接一个100Ω的匹配电阻,用以消除时钟的毛刺并限制驱动电流;数据部分主要完成数据传输工作,包括数据线DQ[15:0]、数据同步信号DQS(本设计LDQS对应数据线低八位,UDQS对应数据线高八位)、数据信号屏蔽线DM(在突发写传输时屏蔽不存储的数据,LDM对应数据位低八位DQ[7:0],UDM对应数据线高八位 DQ[15:8]),本设计在DQS信号和DM信号上串接一个22Ω的电阻,起抗干扰和滤波作用,提高信号质量;命令部分包括行地址选通信号RASn、列地址选通信号CASn、写使能信号WEn、片选信号CSn、时钟使能信号CKE以及芯片内部终端电阻使能ODT,主要完成寻址、组成各种控制命令以及内存初始化工作。本设计由于DDR2控制器内没有终端电阻,因此将DDR2 SDRAM的ODT信号直接接地使DDR2芯片内的终端电阻无效。

  DDR2的读、写时序图分别见图4和图5:

                                                    图4 DDR2的读数据时序图

                                           图5 DDR2的写数据时序图

  以太网的接口电路设计

  用示波器测量电信号时,信息和测量结果便捷的保存和共享变得日益重要。若数字示波器提供以太网接口,开发人员就可以方便地将测量数据和结果通过网络共享,实现远程调试;也可以将波形数据通过网络上传到PC机上,在PC机上实现波形数据的处理、分析和显示。

  OMAP-L138内部集成的以太网控制器(EMAC)支持IEEE802.3标准,支持10Base-T和100Base-T两种以太网标准,有全双工和半双工两种工作模式可供选择,提供了MII和RMII两种以太网接口。

  选用LAN8710以太网收发器,该以太网收发器提供MII和RMII两种以太网接口。本设计采用MII接口实现LAN8710与EMAC的互联。MII接口包括一个数据接口,一个MAC和PHY之间的管理接口。数据接口包括分别用于发送器和接收器的两条独立信道。每条信道有4根数据线、时钟和控制信号,其中管理接口是双信号接口:一个是时钟信号,另一个是数据信号。通过管理接口,上层能监视和控制PHY。管理接口的时钟MDC由EMAC提供,最高可达 8.3MHz;数据信号MDIO是双向接口,与MDC同步,控制收发器并从收发器收集状态信息。可收集的信息包括链接状态、传输速度与选择、断电、低功率休眠状态、TX/RX模式选择、自动协商控制、环回模式控制等。

以太网接口连接示意图如图6所示:

 

图6 以太网接口连接示意图 


  结论

  本设计有以下优点:数据处理与系统控制同步执行;微处理器内部存储资源丰富,且采用二级缓存结构,系统响应速度快;外设资源丰富,提供了如USB接口、RS232接口和以太网接口等与PC机互联的接口,方便示波器上采集到的波形数据在PC机上实时处理和在线调试;外部存储器资源丰富,采用1Gbit 容量的DDR2 SDRAM作后级波形数据缓存区和显示数据缓存区,能够存储更多波形数据,观察到更多波形细节。由此可见,采用该示波器系统可大幅提高数字示波器的数据处理能力和波形捕获率,整机的响应速度也将上一个台阶。

关键字:数字示波器  微处理器  硬件设计 引用地址:一种数字示波器的微处理器硬件设计

上一篇:ADISl6209 IMU在倾角测量中的应用
下一篇:基于Linux下USB主机接口设计

推荐阅读最新更新时间:2024-05-02 21:10

数字示波器和模拟示波器的不同点和工作原理
示波器是一种用途十分广泛的电子测量仪器。俗话说,电是看不见摸不着的。但是示波器可以帮我们“看见”电信号,便于人们研究各种电现象的变化过程。所以示波器的核心功能,就和他的名字一样,是显示电信号波形的仪器,以供工程师查找定位问题或评估系统性能等等。 而波形,也有多种定义,比如时域或者频域的波形,对于示波器而言,大多数时候测量的是电压随时间的变化,也就是时域的波形。因此,示波器可以分析被测点电压变化情况,从而被广泛的应用于各个电子行业及领域中。 一般我们业内对示波器的分类只按模拟示波器和数字示波器来分,有些厂家可能为了突出其示波器的某项功能给其命名为其他名字,比如数字荧光示波器等。但其本质原理依然逃不出这2大示波器类别。 模
[测试测量]
怎样应用RIGOL数字示波器观测一段时间的波形?
示波器不能一直连续的去捕获波形并保存下来,如果在自动的模式下,示波器是不停的刷新波形数据的。 如果需要捕获一段时间内信号的连续波形。 您可以按照下面的步骤设置: 1、将存储深度设置到最高, 2、将时基调到合适的档位,根据您要观测的时间来设置,例如您想观察1S的时间,那么将时基设置到100ms/Div,这时整个屏幕上的时间就是100ms*14格(DS2000)=1.4s. 3、将触发方式选为单次触发 。当波形满足触发条件后,波形被捕获并稳定显示在屏幕上。
[测试测量]
基于FPGA的数字核脉冲分析器硬件设计方案
  0 引言   多道脉冲幅度分析仪和射线能谱仪是核监测与和技术应用中常用的仪器。20世纪90年代国外就已经推出了基于高速核脉冲波形采样和数字滤波成型技术的新型多道能谱仪,使数字化成为脉冲能谱仪发展的重要方向。国内谱仪技术多年来一直停留在模拟技术水平上,数字化能谱测量技术仍处于方法研究阶段。为了满足不断增长的高性能能谱仪需求,迫切需要研制一种数字化 能谱仪。通过核脉冲分析仪显示在显示器上的核能谱帮助人们了解核物质的放射性的程度。   1 数字多道分析仪的优势   国内很大一部分学者采用核谱仪模拟电路的方式实现脉冲堆积的处理。由于整个过程都是由模拟电路来实现,所以一直受到多种不利因素的困扰:模拟滤波成形电路有限的处理能力达不到最佳
[测试测量]
基于FPGA的数字核脉冲分析器<font color='red'>硬件设计</font>方案
数字示波器的采样频率与带宽有何关系?
采样频率和带宽从硬件上来说应该没什么直接关系。 有人说采样频率大于2倍信号带宽即可,也有人说要5倍。不管怎么样,现在的示波器采样率基本都是大带宽好多倍的,比如100MHz的示波器,现在基本都1个G了,所以没必要太关注这个了。 相反,采样率和存储深度到是更值得重视的了。 这里,采样率其实是个变量,它不是一成不变的。 存储深度决定了示波器能在多少记录时长内依然保持高采样率
[测试测量]
<font color='red'>数字示波器</font>的采样频率与带宽有何关系?
瑞萨Z/V微处理器开启实时AI推理和低功耗MPU新篇章
全球领先的半导体解决方案供应商瑞萨电子集团宣布推出RZ/V系列微处理器(MPU),搭载了瑞萨独有的图像处理AI加速器——DRP-AI(DRP:动态可配置处理器)。该系列首款产品RZ/V2M可在嵌入式设备中以业界领先低能耗实现实时AI推理。 在诸如工业与基础设施监控摄像头、零售业用扫码枪和POS终端设备的智能摄像头等应用中,对具有实时、基于AI的人像和物体识别功能的需求正在迅速增长。然而,AI处理带来的高功耗和发热给产品和设备的开发人员带来了新挑战。RZ/V2M利用DRP-AI的卓越能耗比,实现低至4W(典型值)的功耗,因而无需配置散热器和冷却风扇,大大简化了散热处理措施,使得RZ/V2M可用于小巧型设备,有助于实现设备尺寸小型
[物联网]
瑞萨Z/V<font color='red'>微处理器</font>开启实时AI推理和低功耗MPU新篇章
ARM硬件设计:复位引脚和复位期间采样引脚
NRST输入引脚 NRST引脚用于主系统复位。它为低时复位所有内部设备寄存器,ARM内核的程序计数器和JTAG/ICE端口。在系统引导时他采样BMS和NTRI引脚。NRST必须被保持到提供给微控制器的电源稳定和依照外部振荡器的启动时间。 在释放NRST引脚前必须保持0电平至少10个时钟周期以便能够正确的采样BMS和NTRI引脚。 复位期间采样的引脚 1.引导模式选择引脚(BMS) P25/BMS输入引脚在NRST引脚的上升沿采样。这个引脚使ARM7TDMI内核从他的内部闪存,或连接到EBI的片选0(NCS0)的一个或多个闪存开始读取指令。一旦BMS引脚在复位期间被采样完毕并且处理器正确初始化,P25/BMS引脚能
[单片机]
LPC2148微处理器介绍
LPC2148是基于一个支持实时仿真和嵌入式跟踪的32/16位ARM7 TDMI-S CPU的微控制器,并带有32kB和512kB嵌入的高速Flash存储器。128位宽度的存储器接口和独特的加速结构使32位代码能够在最大时钟速率下运行。对代码规模有严格控制的应用可使用16位Thumb模式将代码规模降低超过30%,而性能的损失却很小。 较小的封装和很低的功耗使LPC2148特别适用于访问控制和POS机等小型应用中;由于内置了宽范围的串行通信接口(从USB 2.0全速器件、多个UART、SPI、SSP到I2C总线)和8kB到40kB的片内SRAM,它们也非常适合于通信网关、协议转换器、软件modem、语音识别、低端成像,为这些应用提
[单片机]
X25054/45E2PROM及其与51系列微处理器的接口方法
    摘要: X25043/45 E2PROM芯片的特点及主要功能,描述了其引脚定义、工作原理、操作指令、存储阵列读时序和写时序。介绍它与51系列微处理器的几种接口方法,并给出应用电路和相应程序。     关键词: 可编程 写使能 51系列微处理器 接口方法 随着测量技术的发展和微处理器的广泛应用,系统的电路越来越复杂,系统的可靠性问题也越来越突出,因此看门狗、工作电压监控和存储器差不多在每一系统中都被采用。Xicor公司提供的X25043/45 E2PROM芯片,把看门狗定时器、工作电压监控和E2PROM三种功能组合在一个封装内,并采用三线总线工作的串行外设接口(SPI)和软件协议,降
[工业控制]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved