什么是核辐射
核辐射通常称为放射性,存在于所有物质之中。核辐射是原子核从一种结构或者一种能量状态转变为另一种结构或者能量状态的过程中所产生的微观粒子流;各种物质都是由最简单的物质组成的,人们把这些最简单的物质称为元素组成元素最基本的单元就是原子,凡是在元素周期表中占同一位置,原子序相同原子质量不相同的元素称其为同位素。原子如果不是因为外来的原因而是自发的发生原子结构的变化我们称其为核衰变。具有这种核衰变性质的同位素我们称之为放射性同位素。在衰变过程中放射出一种特殊的带有一定能量的粒子或者射线,这种现象我们称之为核辐射或者放射性。
核辐射的种类和性质
根据核辐射的性质不同,放射出的粒子或射线有α射线,β射线,γ射线,X射线等。
第一,α粒子一般具有4~10Mev能量,用α粒子电离气体比其他辐射强得多,因此在检测中,α辐射主要用于气体分析,用来测量气体压力和流量等参数。
第二,β粒子实际上是高速运动的电子,它在气体中的射程可达20m。在自动检测仪表中,主要是根据β粒子的辐射和吸收来测量材料的厚度,密度或重量;根据辐射的反应和散射来测量覆盖的厚度,利用β粒子很大的电力能力来测量气体流量。
第三,λ射线是一种从原子核内发射出来的电磁辐射,它在物质中的穿透能力比较强,在其气体中的射程为数百纳米,能穿过几千米厚的固体物质。λ射线被广泛应用在各种检测仪表中,特别是需要辐射和穿透力前的情况,如金属探伤,侧厚以及测量物体的密度等。
第四,X射线是由原子核外的内层电子被激发而放出的电磁波能量。
核辐射的危害
当人们暴露于核辐射环境下,可能会得辐射病。这种病是有症状的。几小时内你就会感到恶心呕吐,随后会出现腹泻、头痛或发烧等症状。在最初的症状过去之后,可能会出现一个短暂的无症状期,但数周后就会出现新的、更严重的症状。在更高的辐射剂量下,这些症状可能出现的更快,也更明显。同时,核辐射会对人体内脏造成广泛的,很多时候甚至是致命的伤害。暴露在核辐射中,一半的健康成年人无法承受4戈雷的辐射剂量。
核辐射传感器
核辐射传感器利用放射性同位素来进行测量的传感器,又称放射性同位素传感器。核辐射传感器是基于被测物质对射线的吸收、反散射或射线对被测物质的电离激发作用而进行工作的。核辐射传感器一般由放射源,探测器以及电信号转换电路组成,可以检测厚度和物位等参数。
放射源和探测器是核辐射传感器的重要组成部分,放射源由放射性同位素物质组成。探测器即核辐射检测器,它可以探测出射线的强弱及变化。随着核辐射技术的发展,核辐射传感器的应用越来越广泛。
核辐射探测器
探测器就是核辐射的接收器,它是核辐射传感器的重要组成部分,是指能够指示、记录和测量核辐射的材料或装置。其用途就是将核辐射信号转化成电信号,从而探测出射线的强弱和变化。目前用于检测仪表上的主要有电离室,闪烁计数器和盖格计数等。
电离室
电离室是气体探测器中原理最简单的。电离室的正常工作是利用电场收集在气体中直接电离所产生的全部电荷。电离室由两个基本电极组成,一个是高压电极,另一个是收集电极,室内充有高压气体氩气,外面是一个密封外壳。 气体探测器的原理是,当探测器受到射线照射时,射线与气体中的分子作用,产生由一个电子和一个正离子组成的离子对。这些离子向周围区域自由扩散。扩散过程中,电子和正离子可以复合重新形成中性分子。但是,若在构成气体探测器的收集极和高压极上加直流的极化电压V,形成电场,那么电子和正离子就会分别被拉向正负两极,并被收集。随着极化电压V逐渐增加,气体探测器的工作状态就会从复合区、饱和区、正比区、有限正比区、盖革区(G - M区)一直变化到连续放电区。
气体放电计数管(盖格计数管)
盖格计数管也是根据射线对气体的电离作用而设计的辐射探测器.它与电离室不同的地方主要在于工作在气体放电区域,具有放大作用。其结构如右图所示.计数管以金属圆筒为阴极,以筒中心的一根钨丝或钼丝为阳极,筒和丝之间用绝缘体隔开。计数管内充有氩、氦等气体。为了便于密封,计数管常用玻璃作外壳,而阴极用金属或石墨涂覆于玻璃表面内部或在外壳内用金属筒作阴极。
闪烁计数器
物质受放射线的作用而被激发,在由激发态跃迁到基态的过程中,发射出脉冲状的光的现象称为闪烁现象。能产生这样发光现象的物质称为闪烁体。闪烁计数器先将辐射能变为光能,然后再将光能变为电能而进行探测,它由闪烁体,光电倍增管和输出电器两组成。
正比计数管
它是由圆筒形的阴极和作为阳极的中央芯线组成的,内封有稀有气体、氮气、二氧化碳、氢气、甲烷丙烷等气体。当放射线射入使气体产生电离时,由于在芯线近旁电场密度高, 电子碰撞被加速,在气体中获得足够的能量,碰撞其它气体分子和原子而产生新的离子对;此过程反复进行而被放大,人们将此过程称为气体放大。放大作用仅限于芯线近旁,核辐射传感器所以可得到与放射线的入射区域无关的一定的放大倍数,由于放大而产生的阳离子迅速离开气体放大区域而产生输出脉冲。输出脉冲的大小正比于因放射线入射而产生电子、正离子对的数目,而电子、正离子对数正比于气体吸收的放射线的能量,因此,正比计数管可以探测入射放射线的能量。正比计数管大多数是圆柱形或者球形、半球形。其阳极很细,阴极直径较大,这主要是为了在外加电压较小的情况下,使阳极附近仍能有很强的电场以便有足够大的气体放大倍数。正比计数管可以在很宽的能量范围内测定入射粒子的能量,能量分辨率相当高,分辨时间很短,并且可作快速计数。
半导体探测器
半导体探测器是近年来迅速发展起来的一种射线探测器。我们知道荷电粒子一入射到固体中就与固体中的电子产生相互作用并失去能量而停止。入射到半导体中的荷电粒子在此过程产生电子和空穴对。
而X射线或γ射线由于光电效应、康普顿散射、电子对生成等而产生二次电子,此高速的二次电子经过与荷电粒子的情况相同的过程而产生电子和空穴。若取出这些生成的电荷,可以将放射线变为电信号。就半导体而言,主要使用的是Si和Ge,对GaAs、CdTe等材料也进行了研究。目前, 开发的半导体传感器有PN结型传感器、 表面势垒型传感器、锂漂移型传感器、非晶硅传感器等。(end)
关键字:核辐射探测 气体压力 流量
引用地址:核辐射探测的基本方案
核辐射通常称为放射性,存在于所有物质之中。核辐射是原子核从一种结构或者一种能量状态转变为另一种结构或者能量状态的过程中所产生的微观粒子流;各种物质都是由最简单的物质组成的,人们把这些最简单的物质称为元素组成元素最基本的单元就是原子,凡是在元素周期表中占同一位置,原子序相同原子质量不相同的元素称其为同位素。原子如果不是因为外来的原因而是自发的发生原子结构的变化我们称其为核衰变。具有这种核衰变性质的同位素我们称之为放射性同位素。在衰变过程中放射出一种特殊的带有一定能量的粒子或者射线,这种现象我们称之为核辐射或者放射性。
核辐射的种类和性质
根据核辐射的性质不同,放射出的粒子或射线有α射线,β射线,γ射线,X射线等。
第一,α粒子一般具有4~10Mev能量,用α粒子电离气体比其他辐射强得多,因此在检测中,α辐射主要用于气体分析,用来测量气体压力和流量等参数。
第二,β粒子实际上是高速运动的电子,它在气体中的射程可达20m。在自动检测仪表中,主要是根据β粒子的辐射和吸收来测量材料的厚度,密度或重量;根据辐射的反应和散射来测量覆盖的厚度,利用β粒子很大的电力能力来测量气体流量。
第三,λ射线是一种从原子核内发射出来的电磁辐射,它在物质中的穿透能力比较强,在其气体中的射程为数百纳米,能穿过几千米厚的固体物质。λ射线被广泛应用在各种检测仪表中,特别是需要辐射和穿透力前的情况,如金属探伤,侧厚以及测量物体的密度等。
第四,X射线是由原子核外的内层电子被激发而放出的电磁波能量。
核辐射的危害
当人们暴露于核辐射环境下,可能会得辐射病。这种病是有症状的。几小时内你就会感到恶心呕吐,随后会出现腹泻、头痛或发烧等症状。在最初的症状过去之后,可能会出现一个短暂的无症状期,但数周后就会出现新的、更严重的症状。在更高的辐射剂量下,这些症状可能出现的更快,也更明显。同时,核辐射会对人体内脏造成广泛的,很多时候甚至是致命的伤害。暴露在核辐射中,一半的健康成年人无法承受4戈雷的辐射剂量。
核辐射传感器
核辐射传感器利用放射性同位素来进行测量的传感器,又称放射性同位素传感器。核辐射传感器是基于被测物质对射线的吸收、反散射或射线对被测物质的电离激发作用而进行工作的。核辐射传感器一般由放射源,探测器以及电信号转换电路组成,可以检测厚度和物位等参数。
放射源和探测器是核辐射传感器的重要组成部分,放射源由放射性同位素物质组成。探测器即核辐射检测器,它可以探测出射线的强弱及变化。随着核辐射技术的发展,核辐射传感器的应用越来越广泛。
核辐射探测器
探测器就是核辐射的接收器,它是核辐射传感器的重要组成部分,是指能够指示、记录和测量核辐射的材料或装置。其用途就是将核辐射信号转化成电信号,从而探测出射线的强弱和变化。目前用于检测仪表上的主要有电离室,闪烁计数器和盖格计数等。
电离室
电离室是气体探测器中原理最简单的。电离室的正常工作是利用电场收集在气体中直接电离所产生的全部电荷。电离室由两个基本电极组成,一个是高压电极,另一个是收集电极,室内充有高压气体氩气,外面是一个密封外壳。 气体探测器的原理是,当探测器受到射线照射时,射线与气体中的分子作用,产生由一个电子和一个正离子组成的离子对。这些离子向周围区域自由扩散。扩散过程中,电子和正离子可以复合重新形成中性分子。但是,若在构成气体探测器的收集极和高压极上加直流的极化电压V,形成电场,那么电子和正离子就会分别被拉向正负两极,并被收集。随着极化电压V逐渐增加,气体探测器的工作状态就会从复合区、饱和区、正比区、有限正比区、盖革区(G - M区)一直变化到连续放电区。
气体放电计数管(盖格计数管)
盖格计数管也是根据射线对气体的电离作用而设计的辐射探测器.它与电离室不同的地方主要在于工作在气体放电区域,具有放大作用。其结构如右图所示.计数管以金属圆筒为阴极,以筒中心的一根钨丝或钼丝为阳极,筒和丝之间用绝缘体隔开。计数管内充有氩、氦等气体。为了便于密封,计数管常用玻璃作外壳,而阴极用金属或石墨涂覆于玻璃表面内部或在外壳内用金属筒作阴极。
闪烁计数器
物质受放射线的作用而被激发,在由激发态跃迁到基态的过程中,发射出脉冲状的光的现象称为闪烁现象。能产生这样发光现象的物质称为闪烁体。闪烁计数器先将辐射能变为光能,然后再将光能变为电能而进行探测,它由闪烁体,光电倍增管和输出电器两组成。
正比计数管
它是由圆筒形的阴极和作为阳极的中央芯线组成的,内封有稀有气体、氮气、二氧化碳、氢气、甲烷丙烷等气体。当放射线射入使气体产生电离时,由于在芯线近旁电场密度高, 电子碰撞被加速,在气体中获得足够的能量,碰撞其它气体分子和原子而产生新的离子对;此过程反复进行而被放大,人们将此过程称为气体放大。放大作用仅限于芯线近旁,核辐射传感器所以可得到与放射线的入射区域无关的一定的放大倍数,由于放大而产生的阳离子迅速离开气体放大区域而产生输出脉冲。输出脉冲的大小正比于因放射线入射而产生电子、正离子对的数目,而电子、正离子对数正比于气体吸收的放射线的能量,因此,正比计数管可以探测入射放射线的能量。正比计数管大多数是圆柱形或者球形、半球形。其阳极很细,阴极直径较大,这主要是为了在外加电压较小的情况下,使阳极附近仍能有很强的电场以便有足够大的气体放大倍数。正比计数管可以在很宽的能量范围内测定入射粒子的能量,能量分辨率相当高,分辨时间很短,并且可作快速计数。
半导体探测器
半导体探测器是近年来迅速发展起来的一种射线探测器。我们知道荷电粒子一入射到固体中就与固体中的电子产生相互作用并失去能量而停止。入射到半导体中的荷电粒子在此过程产生电子和空穴对。
而X射线或γ射线由于光电效应、康普顿散射、电子对生成等而产生二次电子,此高速的二次电子经过与荷电粒子的情况相同的过程而产生电子和空穴。若取出这些生成的电荷,可以将放射线变为电信号。就半导体而言,主要使用的是Si和Ge,对GaAs、CdTe等材料也进行了研究。目前, 开发的半导体传感器有PN结型传感器、 表面势垒型传感器、锂漂移型传感器、非晶硅传感器等。(end)
上一篇:CDC为诊断系统提供简单而稳定的电平检测
下一篇:剂量测量核心器件选择的对比
推荐阅读最新更新时间:2024-03-30 22:48
xia发布主动性网络评估与监测平台
中国北京,2016年3月29日 行业领先的网络测试、可视性和安全解决方案供应商 Ixia (Nasdaq: XXIA)于今日推出了全新自动化、主动服务等级协议(SLA)以及可通过仿真和分析网络应用流量来评估应用和业务性能的用户体验监测解决方案Hawkeye。 IT管理者们往往需要考虑如何通过其网络提升整体服务质量与终端用户体验。事实上,EMA的研究结果表明,59%的IT管理团队都认为终端用户体验正日益变得意义重大 。 为确保优质的用户体验,企业需要了解客户对其网站、应用或网络服务的意见及反馈。Ixia推出的Hawkeye平台可针对网络性能和服务状态进行持续评估。同时,它能够识别并量化已经出现的问题,并验证问题是否得到妥善解决,从而
[网络通信]
怎样做好电磁流量计使用的安全工作
电磁流量计由电磁流量传感器和电磁流量转换器两大部分组成。 电磁流量计在对应领域中的应用总是可以很及时的发挥自己的作用,并且它凭借自己的电源优势总是可以让它的使用变得更加的便捷,所以在更多的时候人们为了能够更加的省事,提高工作效率,也就更加的倾向于选择这样的一种仪器了。 对于电磁流量计这样的一种仪器来说,它的优势就是使用起来更加的省事,而作为一个使用者不仅需要从它的应用中获得更多的优势,还应该知道怎样做好仪器使用安全工作。 安全使用需要我们确保它的电源接通处是否涉是完好的,也就是说在我们使用仪器之前,我们就需要对仪器的各个部件进行检查,看看是否存在破损的情况,而如果是存在的话,那么***好的是不要使用了。 除了这个之外
[测试测量]
大管道气体流量检测仪表
工程中口径大于 300mm 的管道普遍采用取样原理、插入安装 方式,仅测取管道中一点或多点的流速来推算流量的插入式流量计,这类仪表的共同特点是:结构简单、安装维修方便、价格低廉、重复性好,是工控系统中检测大管道气体流量性价比较高的仪表,一般精确度不高,不宜用于需要准确计量的贸易结算。因其原理均为取样性质,所以首先要了解管道内的流速分布,这样才能正确选定检测点的位置及数量。 一 工业管流 1. 千变万化的管内流速分布 管道中安装的形形色色的管配件(如阀门、弯头、歧管、变径管、过滤器等),由于它们的形式及组合方式极多,所引起的管内流速分布也千变万化,难以估计。而绝大多数流量仪表的精确度都与流速分布有关,它的校验所处的流场应与实用条
[测试测量]
利用MEMS提高医疗设备流量测量精度
流量传感器是众多医疗设备的关键器件,它被用来监视气体输出量以确保流量精确。目前可用的流量传感技术主要包括压差传感、正排量传感及叶轮传感。与那些不包含集成的信号放大与温度补偿电路的测量元件,微机电系统(MEMS)大流量传感器更容易集成(图1)。虽然MEMS大流量传感器具备许多优点,但由于其测量的流量比较大,所以价格一直偏高。 降低成本、减少空间、减轻重量的一个方法是在旁路通道设置低流量传感器来测量主通道上较大的流量。MEMS流量传感器旁路通道设置类似于差压传感器(间接测量气体流量,见图2).。与压差传感器相比,MEMS传感器在很低流量情况下依然可以提供更高的分辨率。图3描述了普通大流量传感器与压差传感器之
[医疗电子]
V锥流量计与孔板流量计相比有哪些优势
V锥流量计的优势和缺陷大家已经了解了,那么V锥流量计和孔板流量计相比,有哪些优势呢?中国传感器交易网的专家对两者进行了对比,一起去了解一下比较全面的知识吧。 V锥流量计是一种高精度、高稳定性、量程比宽、可测介质广的新型流量计。它可测量介质包括液体、气体、蒸汽等,几乎涵盖了所有流动性介质。 孔板、喷嘴和文丘里流量计等差压式流量计已统领流量领域近百年,其优点是已经标准化、结构简单牢固、易于加工制造、价格低廉、通用性强。 一直以来,从未间断过对它们的研究和改善工作,但由于先天结构上的缺陷,其本身固有的一些缺点,至今仍然没能得到很好的解决。 如:流出系数不稳定、线性差、重复性不高从而影响到准确度也不高。孔板入口锐角这个关键部位易磨损、前部
[测试测量]
小伙偷3416.52GB流量,价值17万 被判刑3年
偷什么的都有,但是你听说过偷流量的吗?而且偷的数量还相当惊人。下面就随手机便携小编一起来了解一下相关内容吧。 据《法制晚报》报道,江苏徐州的林某刚毕业时黑进某通讯公司,发现了一个员工套餐的漏洞,普通账号登陆上去后就能获得更高权限,每月可以免费用300GB流量。 林某随后便通过漏洞一直盗用这份免费流量套餐,累计共偷用流量3416.52GB,经认定价值总价值174925元——每GB 51元? 近日,法院以盗窃罪判处林某有期徒刑3年2个月,并处罚金人民币3万元。 林某表示,非常后悔做这种事。 以上是关于手机便携中-偷啥的都有!小伙偷3416.52GB流量,价值17万 被判刑3年的相关介绍,如果想要了解
[手机便携]
流量计的使用以及维护方法
流量计的应用范围非常的广泛,而且使用的过程中需要特别的注意环境、操作、安装等。因为,这众多的因素会导致测量精度受到影响。 一般能够导致流量计测量出现误差的情况大致有以下几种: 1、针对工业流场上游侧不同类型阻力件产生的影响,如何合理确定不同情况下流量计上游直管段长度; 2、操作压力、温度及气体组分的变化对流量测量影响及校正办法; 3、不同雷诺数速度分布剖面修正系数精确确定和流量计主体几何尺寸误差所带来对精度的影响。 为了克服以上的几种情况,工业使用流量计的时候,需要注意其正确的使用和维护措施。为保证流量计长期正常工作,必须经常检查流量计的运行状况,作好维护工作,发现问题要及时排除。具体的大家可以遵循一下几点:
[测试测量]
五个步骤轻松解决外夹式超声波流量计使用中信号太弱问题
外夹式超声波流量计 是一种非常适用于管道满管测量的流量仪表,具有安装方便、非接触式,既可以测量大管径的介质流量也可以用于不易接触和观察的介质的测量,其测量准确度很高,几乎不受被测介质的各种参数的干扰,尤其可以解决其它仪表不能的强腐蚀性、非导电性、放射性及易燃易爆介质的流量测量问题。由于其具有以上种种其它类型仪表所不具有的特点,现已广泛的应用于工业上各种自来水、污水、海水等液体的测量,还用于石油、化工、冶金等领域。 外夹式超声波流量计 在安装过后在无保养的前提下一般都能正常运行很长一段时间,如果出现了接收不到信号或信号太弱的问题也不必惊讶,只要您要据润中仪表科技为建议五个步骤,规范的操作、认真处理便很快地恢复正常:
[测试测量]
- 热门资源推荐
- 热门放大器推荐