0 引言
在IT系统中,单点接地故障是一种很常见的故障。一旦出现单点接地故障,IT系统就会变为TN-S系统,虽然可以带故障继续运行,但已经失去了IT系统的优点,增加了安全隐患。因此需要实时监测系统的对地绝缘状况,并在监测到对地绝缘故障时,能通过仪表自动定位故障点支路。若没有自动定位功能,一旦出现故障,只能依靠人工对多达数十条、数百条,乃至成千上万条负载支路逐条断电查找,不仅费时费力,更严重破坏了供电连续性。这在某些需要连续供电的特殊场所(如医院手术室等)是不允许的[1]。
基于上述情况,本文设计了一种绝缘故障定位用信号发生器,它装设于IT系统中, 配合绝缘故障定位装置实现绝缘故障定位功能。当IT系统发生绝缘故障时,信号发生器启动并产生定位信号,注入到IT系统与地之间。绝缘故障定位装置通过传感器逐路巡检,当检测到定位信号流经某支路时,便可确定该支路为绝缘故障所在回路。此时,操作人员可有目的性的针对该故障支路进行断电或其它保护操作,不必逐条支路断电进行排查,不仅提高了工作效率,也有效的保障了系统供电的连续性。因此,对电力系统供电的安全性、连续性和可靠性具有极其重要的意义。
1 信号发生原理
信号发生器的工作原理是当IT系统发生单点接地故障时,轮流在系统某根线与大地之间注入定位信号,以便绝缘故障定位仪能在故障支路上监测到定位信号。常采用图1所示发生原理。
考虑以上两种情况后,本文采用脉冲信号作为测试信号。脉冲信号幅度足够大、宽度足够窄,就可实现足够小的有效值、足够大的峰值两个期望目标。从简化设计的角度出发,没必要在信号发生器上直接产生高压脉冲信号,可通过截取IT系统中交流信号的波峰来实现。
对于单相交流IT系统, L1、L2线间电压为AC 220V,其峰值为220V,满足脉冲峰值足够大的要求。为满足有效值足够小的要求,本文依照标准IEC61557-9的“定位信号电压的有效值不允许超过50V”的规定,将电压阈值设为50V。据此,可计算出脉冲宽度(由于脉冲宽度很小,为方便计算,可将此峰值脉冲视为幅度为220的矩形脉冲)为: 当交流电压周期为50Hz时,脉冲宽度为: 当交流电压为60Hz时,脉冲宽度为: 利用单片机的定时器功能,配合光耦,可以精确截取0.4ms的峰值脉冲。由于0.4ms<0.4304ms<0.5165ms,且实际截取的脉冲信号中,除波峰一点外,其余点幅度均小于V,因此其有效值一定会小于设定的阈值(50V),满足脉冲有效值足够小的要求。
2 硬件设计
信号发生器的硬件功能模块主要包括电源模块、中央控制模块、监测模块、信号发生模块、通信模块、指示灯模块。硬件设计原理框图如图2所示。
3 软件设计
信号发生器的控制程序由C语言编写,在程序设计中采用了结构化程序设计方法,便于程序代码的维护、移植和升级。系统上电后,首先完成各模块的初始化和自检,确保系统工作的可靠性;然后确定系统中各部分硬件电路正常后,自动进入正常工作模式。系统主程序流程如图3所示。
(1)数字滤波算法。信号发生器采用数字滤波算法滤除信号中谐波、噪声等干扰,只让有用的信号参与结果运算,从而使计算的结果更加精确可靠。 [page]
(2)IT系统交流频率自适应法。因为工作环境的多样性,工作电压不一定就是50Hz,实际中的电压频率可能更高或更低,因此要通过监测模块实时监测IT系统的交流频率。监测模块将比较L1、L2线间的电压,UL1>UL2和UL1<UL2的时间分别记为t1和t2。因为电压比较时存在一定的阈值电压,所以会存在t1>t2或t2>t1的现象。如果t1+t2=20ms(即系统交流频率为50Hz),出现系统对地绝缘故障时,就可在与之间截取一段宽度为0.4ms的脉冲,在与之间截取一段宽度为0.4ms的脉冲。
如图4所示,在系统电压的每个周期,信号发生器截取2次脉冲,分别在L1-L2的正半波波峰处(图4中第二行),以及L1-L2的负半波波峰处(图4中第三行)。若故障点在L1线上,则在L1-L2的负半波波峰处截取的脉冲波形可以在故障支路上表现为正,能被绝缘故障定位仪监测到;若故障点在L2线上,则在L1-L2的正半波波峰处截取的脉冲波形可以在故障支路上表现为正,能被绝缘故障定位仪监测到。
定位信号发生器实物如图5所示,它采用DC 24V供电,面板上有“运行”、“通讯”以及“测试”LED指示灯显示工作状态。
信号发生器已通过型式试验检验,各项指标均达到国家标准的要求,目前已成功应用于某医院重症监护室,如图6所示。通过通信线路,绝缘监测仪、绝缘故障定位仪和信号发生器构成一个局域网络。信号发生器上电后自动进入监测模式,监测IT系统的频率。当绝缘监测仪监测到IT系统发生对地绝缘故障时,通过通信线路,启动信号发生器和绝缘故障定位仪,进入信号发生模式和故障定位模式。
监测到故障支路后,绝缘故障定位仪显示故障支路数,同时通过通信线路,将故障支路信息返回给绝缘监测仪。绝缘监测仪收到信息后立即报警,通过界面显示故障支路数,同时命令信号发生器和绝缘故障定位仪停止发出信号和故障定位,信号发生器再次进入监测模式。
在现场对系统进行调试,模拟绝缘故障100次,绝缘故障定位率为100%,这充分证明了该信号发生器的可行性。
4 结束语
本文设计的信号发生器具有自适应IT系统频率,注入高峰值、低有效值脉冲波形,多系统组网等功能,并可通过面板指示灯显示当前工作状态。该信号发生器符合国家相关标准,配合绝缘监测仪、绝缘故障定位仪,能为IT系统提供安全、可靠的供电解决方案。
参考文献
[1] GB-50054-2011 低压配电系统设计规范[S]
[2] JGJ 16-2008 民用建筑电气设计规范[S].
[3] IEC 61557-9 Electrical safety in low voltage distribution systems up to 1 000 V a.c. and 1 500 V d.c.— Equipment for testing, measuring or monitoring of protective measures —
Part 9: Equipment for insulation fault location in IT systems(end)
关键字:IT系统 信号发生器 故障定位
引用地址:配电系统绝缘故障定位信号发生器的设计与应用
在IT系统中,单点接地故障是一种很常见的故障。一旦出现单点接地故障,IT系统就会变为TN-S系统,虽然可以带故障继续运行,但已经失去了IT系统的优点,增加了安全隐患。因此需要实时监测系统的对地绝缘状况,并在监测到对地绝缘故障时,能通过仪表自动定位故障点支路。若没有自动定位功能,一旦出现故障,只能依靠人工对多达数十条、数百条,乃至成千上万条负载支路逐条断电查找,不仅费时费力,更严重破坏了供电连续性。这在某些需要连续供电的特殊场所(如医院手术室等)是不允许的[1]。
基于上述情况,本文设计了一种绝缘故障定位用信号发生器,它装设于IT系统中, 配合绝缘故障定位装置实现绝缘故障定位功能。当IT系统发生绝缘故障时,信号发生器启动并产生定位信号,注入到IT系统与地之间。绝缘故障定位装置通过传感器逐路巡检,当检测到定位信号流经某支路时,便可确定该支路为绝缘故障所在回路。此时,操作人员可有目的性的针对该故障支路进行断电或其它保护操作,不必逐条支路断电进行排查,不仅提高了工作效率,也有效的保障了系统供电的连续性。因此,对电力系统供电的安全性、连续性和可靠性具有极其重要的意义。
1 信号发生原理
信号发生器的工作原理是当IT系统发生单点接地故障时,轮流在系统某根线与大地之间注入定位信号,以便绝缘故障定位仪能在故障支路上监测到定位信号。常采用图1所示发生原理。
图1 信号发生器的发生原理
考虑以上两种情况后,本文采用脉冲信号作为测试信号。脉冲信号幅度足够大、宽度足够窄,就可实现足够小的有效值、足够大的峰值两个期望目标。从简化设计的角度出发,没必要在信号发生器上直接产生高压脉冲信号,可通过截取IT系统中交流信号的波峰来实现。
对于单相交流IT系统, L1、L2线间电压为AC 220V,其峰值为220V,满足脉冲峰值足够大的要求。为满足有效值足够小的要求,本文依照标准IEC61557-9的“定位信号电压的有效值不允许超过50V”的规定,将电压阈值设为50V。据此,可计算出脉冲宽度(由于脉冲宽度很小,为方便计算,可将此峰值脉冲视为幅度为220的矩形脉冲)为: 当交流电压周期为50Hz时,脉冲宽度为: 当交流电压为60Hz时,脉冲宽度为: 利用单片机的定时器功能,配合光耦,可以精确截取0.4ms的峰值脉冲。由于0.4ms<0.4304ms<0.5165ms,且实际截取的脉冲信号中,除波峰一点外,其余点幅度均小于V,因此其有效值一定会小于设定的阈值(50V),满足脉冲有效值足够小的要求。
2 硬件设计
信号发生器的硬件功能模块主要包括电源模块、中央控制模块、监测模块、信号发生模块、通信模块、指示灯模块。硬件设计原理框图如图2所示。
图2 硬件设计原理框图
3 软件设计
信号发生器的控制程序由C语言编写,在程序设计中采用了结构化程序设计方法,便于程序代码的维护、移植和升级。系统上电后,首先完成各模块的初始化和自检,确保系统工作的可靠性;然后确定系统中各部分硬件电路正常后,自动进入正常工作模式。系统主程序流程如图3所示。
图3 软件流程图
(1)数字滤波算法。信号发生器采用数字滤波算法滤除信号中谐波、噪声等干扰,只让有用的信号参与结果运算,从而使计算的结果更加精确可靠。 [page]
(2)IT系统交流频率自适应法。因为工作环境的多样性,工作电压不一定就是50Hz,实际中的电压频率可能更高或更低,因此要通过监测模块实时监测IT系统的交流频率。监测模块将比较L1、L2线间的电压,UL1>UL2和UL1<UL2的时间分别记为t1和t2。因为电压比较时存在一定的阈值电压,所以会存在t1>t2或t2>t1的现象。如果t1+t2=20ms(即系统交流频率为50Hz),出现系统对地绝缘故障时,就可在与之间截取一段宽度为0.4ms的脉冲,在与之间截取一段宽度为0.4ms的脉冲。
如图4所示,在系统电压的每个周期,信号发生器截取2次脉冲,分别在L1-L2的正半波波峰处(图4中第二行),以及L1-L2的负半波波峰处(图4中第三行)。若故障点在L1线上,则在L1-L2的负半波波峰处截取的脉冲波形可以在故障支路上表现为正,能被绝缘故障定位仪监测到;若故障点在L2线上,则在L1-L2的正半波波峰处截取的脉冲波形可以在故障支路上表现为正,能被绝缘故障定位仪监测到。
图4 L1、L2间电压及截取的脉冲电压
定位信号发生器实物如图5所示,它采用DC 24V供电,面板上有“运行”、“通讯”以及“测试”LED指示灯显示工作状态。
图5 某医院重症监护室IT系统应用图
信号发生器已通过型式试验检验,各项指标均达到国家标准的要求,目前已成功应用于某医院重症监护室,如图6所示。通过通信线路,绝缘监测仪、绝缘故障定位仪和信号发生器构成一个局域网络。信号发生器上电后自动进入监测模式,监测IT系统的频率。当绝缘监测仪监测到IT系统发生对地绝缘故障时,通过通信线路,启动信号发生器和绝缘故障定位仪,进入信号发生模式和故障定位模式。
图6 信号发生器产生的波形
图7 绝缘故障定位仪监测到的波形
监测到故障支路后,绝缘故障定位仪显示故障支路数,同时通过通信线路,将故障支路信息返回给绝缘监测仪。绝缘监测仪收到信息后立即报警,通过界面显示故障支路数,同时命令信号发生器和绝缘故障定位仪停止发出信号和故障定位,信号发生器再次进入监测模式。
在现场对系统进行调试,模拟绝缘故障100次,绝缘故障定位率为100%,这充分证明了该信号发生器的可行性。
4 结束语
本文设计的信号发生器具有自适应IT系统频率,注入高峰值、低有效值脉冲波形,多系统组网等功能,并可通过面板指示灯显示当前工作状态。该信号发生器符合国家相关标准,配合绝缘监测仪、绝缘故障定位仪,能为IT系统提供安全、可靠的供电解决方案。
参考文献
[1] GB-50054-2011 低压配电系统设计规范[S]
[2] JGJ 16-2008 民用建筑电气设计规范[S].
[3] IEC 61557-9 Electrical safety in low voltage distribution systems up to 1 000 V a.c. and 1 500 V d.c.— Equipment for testing, measuring or monitoring of protective measures —
Part 9: Equipment for insulation fault location in IT systems(end)
上一篇:ZDS2022示波器全球首发
下一篇:示波器探头浅谈
推荐阅读最新更新时间:2024-03-30 22:48
MIT研究人员开发新型计算机系统,可自动设计机器人形态
设想一下,如果人们需要一个能爬楼梯的机器人,那么这个机器人应该是什么的形状?它是应该像人一样有两条腿?还是应该像一只蚂蚁一样有六条腿? 设计出合适的形状,对于机器人穿越特定地形的能力来讲是至关重要的。但是,不可能通过人工设计来构建和测试每一种潜在的形态。 近日,来自麻省理工学院(MIT)的研究人员,成功开发了一种计算机系统,研究人员利用该系统可以对机器人的形状进行仿真,并确定哪种设计的效果是最优的。 相关论文以“RoboGrammar: Graph Grammar for Terrain-Optimized Robot Design”为题,发表在 2020 年度 SIGGRAPH 亚洲的会议上。 (来源:MIT官网) 论文作者之
[机器人]
基于模块化设计的R&S BTC可优化执行各种测试任务
R&S BTC是罗德与施瓦茨公司(R&S)推出的高端广播电视测试系统一体化解决方案,是一款针对音视频/多媒体应用领域支持分析功能及自动化测试的信号发生器平台。
R&S介绍,新推出的广播电视测试系统R&S BTC集成了诸多功能,可提供一个完整的测试环境,能满足现今及未来可能的传输标准,几乎所有的音频、视频和多媒体应用都可以通过这一设备来实现。例如,R&S BTC支持所有常见的数字和模拟电视标准,包括有线、卫星和地面电视以及数字/模拟音频广播标准,并全面支持第二代DVB标准,如DVB-T2、DVB-C2和DVB-S2,可满足所有开放系统互连(OSI)要求。
R&S BTC可以产生和回放音视频流,并输出调制后的高质量RF信号。R
[测试测量]
如何通过信道校正优化宽带宽信号的性能
当您使用信号发生器(信号源) 输出连续波时,信号发生器在射频输出端口确认其输出幅度精度。由于温度会随时间而升高,信号发生器通过自动电平控制 (ALC)电路或外部电平控制功能来监控和调节其输出功率。 但是,我们在之前发表的文章中提到的内容适用于特定的频率点幅度补偿。在不同的频率点上,针对幅度平坦度要应用不同的偏置值。如果信号是调制过的信号,这个信号会占用一定的带宽。只对信号应用一个偏置值,不能校正整个信号带宽的平坦度效应。这些效应不仅包括幅度平坦度,还包括相位平坦度。 心得1:使用内部信道校正 大多数新款矢量信号发生器都支持内部校准程序,这个程序会在整个射频频率和功率电平范围内收集基带和射频幅度和相位误差的校正数据。校正数据
[测试测量]
IT系统在医疗场所应用中的若干问题探讨
0 引言 近年来,随着人们对IT系统认识的不断深入,IT系统的设计和应用也越来越广泛,其中,医用隔离电源系统就是IT系统在医疗场所的典型应用 。医院因其职能的特殊性,对其配电方式也有特殊的要求。如医院的外科手术设备、用于维持病人生命的设备等,为了保证供电的连续性和可靠性,保障设备使用人员和病人的安全性,均应采用IT系统供电,同时辅以高要求的局部等电位联结 。 针对IT系统在医疗场所的设计和应用,国内不少电气专家和同仁都曾刊文介绍,提供了非常宝贵的建议和经验。医疗IT系统的设计,具有不同于其它场所IT系统设计的特点,所采用的绝缘监测装置也有特殊的要求。笔者结合实际工程经验,对医疗IT系统应用中几个相关问题陈述一下自
[医疗电子]
Arqit和Blue Bear合作 提高自动驾驶系统的安全性
10月21日,量子加密技术专家Arqit Quantum宣布与无人和自动驾驶系统供应商Blue Bear Systems Research达成协议。两家公司将共同展示Blue Bear无人系统在关键陆海空领域的Arqit量子加密功能。Blue Bear拥有众多下一代无人和自动驾驶系统,并已交付国防客户。应用QuantumCloud将为Arqit的一系列产品提供可证明的安全加密。 (图片来源:Arqit Quantum) 通过Centurion Swarm Mission System,Blue Bear Smart Connect航空电子设备可将基本车辆快速转换为高度自主的车辆,并托管QuantumCloud。Blue
[汽车电子]
基于Sprite的手机移动视频监控系统
1 引言
随着社会的发展, 视频监控技术在各行各业得到了广泛的应用。如何让用户实现随时随地进行监控, 手机移动监控系统提供了一个很好的解决方案。通过无线网络与互联网的结合, 手机移动监控系统把监控设备的视频信号通过移动互联网络传输, 实现实时在线监控现场情况。目前, 手机移动监控系统所采用的技术主要是利用J2ME 的P layer播放器技术, 进行现场监控, 不仅需要手机支持RTSP等实时流媒体协议, 而且对移动互联网有一定的要求。本文利用J2ME 的Sprite, 以动画的效果来显示服务器传输过来的现场监控图片, 模拟视频监控, 达到实时视频监控的要求。
2 系统的设计
手机移动监控系统由视频采集器、服务器、移动互联
[嵌入式]
基于PC机的模拟信号发生器的设计
1 引言 在实际研发各种控制器、显示器等涉及到数据采集的电子仪器的时候,对这些产品进行性能测试是必不可少的。购买专用的信号发生器不但价格昂贵,而且可扩展性能较差;把研发的产品放到实际工作环境,不但不便于调试,而且很多工业现场也不允许。考虑到PC机的普及程度,可以利用现有的资源来设计一个模拟信号发生器,同时运用CPLD进行电路控制,可以方便的实现电路扩展。 2 模拟信号发生器设计与实现 2 . 1 设计思想 在PC机上产生波形信号通过USB2.0接口传入USB接收模块。USB接收模块将接收到的波形信号传输给CPLD。由于DAC8580是16位串行输入的DA转换器,CPLD需要对波形信号的数据格式进行并行到串行的
[模拟电子]