天线近场测量技术探讨

发布者:量子心跳最新更新时间:2014-11-18 来源: eccn关键字:天线  近场测量技术  测试测量 手机看文章 扫描二维码
随时随地手机看文章
1 引言

天线特性参数的测量有多种方法,目前,主要的方法包括三大类:天线的远场测量、天线的紧缩场测量、天线的近场测量。其中,因天线特性主要是定义在天线的远场区故远场测量更为直接准确,而紧缩场测量天线主要是拉近远场所需远场条件:d≥2D2/λ,其通常采用一个抛物面金属反射板,将馈源发送的球面波经反射面反射形成平面波,在一定远距离处形成一个良好的静区。将天线安置在静区内,测量天线的远场特性,其类似于远场测量,只是缩短测量距离,便于在理想远场环境(暗室)下进行测量。

比较而言,天线近场测量技术应用更为广泛,其对设备要求低,不需要造价昂贵的暗室环境,也不需要远场测量下,对射频系统的较高的要求。

传统的远场测量由于受地面反射波的影响,难以达到这么高的测量精度。另外,远场测量还受周围电磁干扰、气候条件、有限测试距离、环境污染和物体的杂乱反射等因素的影响,已经越来越难以适应现代卫星天线的测量要求。新一代的天线测量技术是以近场测量和紧缩场测量为代表的。近场测量技术利用探头在天线口面上做扫描运动,测量口面上的幅度和相位,然后把近场数据转换成远场。由于近场测量只需测量天线口面上的场,就可避免远场测量的诸多缺点,而成为独立的一门测量技术。

近场测量技术主要是指频谱近场测量技术,通过研究被测信号的频谱结构进行频谱分析,从而得到近场天线的各项参数。与远场测量不同的是,其通过采集天线近场区域辐射场的数据,经近场——远场变换,由计算机得到天线的远场特性。只要保证一定的幅度和相位测量精度,即可较为准确的得到远场特性。

频域近场测量中,信号源发射连续信号,适用于频域平面波谱分析,在时域近场测量技术中,信号源发射的是脉冲信号,用时域平面波谱分析比较合适。

1994来,美国的Rome实验室的Thorkild R.Hasen和Arthur D.Yanghjian提出了时域平面近场测试方法,并推导出时域内的格林函数表达式和平面波普表达式,同时分析了探头误差分析与修正公式。国内在此领域研究比较少,北京理工大学搭建了国内第一个时域近场测试系统[1]。

天线的测量经历了一个从远场测量到近场测量的发展过程。远场测量是直接在天线的近场区对天线的电磁场进行测量,所以测量场地和周围范围电磁环境对测量精度影响比较大,对某些天线来说,要求测量距离要远大于2D2,其中D为被测天线的口径尺寸,λ为工作波长,而且对测量场地的反射电平、多路径和电磁环境干扰的抑制都提出了很高的要求,这些要求在远场条件下往往很难满足。随着测量设备和计算手段的不断进步,天线的电气特性可以在微波暗室内通过近场测量更方便、更精确的测得。

近场测量是在天线近区范围内,求得天线的远场特性。由于其不受远场测试中的距离效应和外界环境的影响,故具有测试精度高、安全保密、可以全天候工作等一系列优点,并且能很好的模拟和控制各种电磁环境,并通过合适的软件有效的补偿各种测量误差,其测量精度甚至优于远场测量,从而得到越来越多的应用,一直是人们研究的重点课题,也是当前高性能天线测量的主要方法之一。

天线近场测量经历的阶段:

时间 研究内容

1950~1961年 无探头修正探索阶段

1961~1965年 探头修正理论研究阶段

1965~1975年 实验验证探头修正理论阶段

1975~至今 推广应用阶段

早在20世纪50年代,国外已经开始了天线近场测量的研究。国内的近场测量的理论研究及实验探索开始于20世纪80年代,西安电子科技大学在1987年成功研制了我国第一套天线近场测量系统[3]。矢量网络分析仪作为天线近场测量系统的核心设备以及射频和微波产品性能的主要测试仪器,多年来在精度、速度、动态范围和操作界面等方面都有较大的改进,对天线近场测量系统的性能优化起了很大的推动作用。

1 天线近场扫描法测量系统

近场测量方法包括:场源分布法、近场扫描法、缩距法、聚焦法和外推法等,这些方法各有其优缺点及适应范围。本文主要讨论近场扫描法来测量天线各项特性。

近场扫描法是用一个特性已知的探头,在离开待测天线几个波长的某一表面进行扫描,测量天线在该表面离散点上的幅度和相位分布,然后应用严格的模式展开理论,确定天线的远场特性。测量面可以是平面、柱面或球面,相应的近场扫描法称为平面、柱面或球面近场测量。从上世纪80 年代初,我们开始了对近场测量技术的研究,于1987年研制出了我国第一套近场测量系统。此后一直从事天线近场测量技术方面的研究及推广。

任何近场测量方法,都需在指定的曲面上规则地采集幅度和相位数据。给定曲面几何形状,数据和参考天线(探头)的特性,通过测量天线的近场特性,经近场-远场变换,由计算机处理、确定待测天线的远场特性。

最常用的扫描技术包括:平面近场(PNF),柱面近场(CNF)和球面近场(SNF)。每一种都需将平动与转动组合实现在理想曲面上的扫描。

近场扫描法测量系统主要由射频子系统,扫描子系统,数据采集处理系统等组成。最简单的射频子系统包含能够向AUT提供射频功率的某种类型的信号源以及能够检测探头接收信号的接收机。在数据采集系统中,幅度和相位数据在测量表面的已知位置(如文中的网格点处)采集,通过扫描探头对特定位置处场值的记录,计算机存储生成所测得的数据,再由计算机通过傅里叶变换实现近场远场数据转换,从而得到天线的远场特性,再可由matlab软件绘出相应远场的幅值和相位随位置的变化的波形图。整个系统的转台及定位均有数据采集与控制系统(DCCS)监视并控制,因而,需由电脑全自动控制,这样既保证转台转角的精度,各背景的恒定,以尽可能减小外界额外环境的干扰,提高测量准确度。此外,由于对天线近场的测量点非常多以及每次参量的变化对背景的重新测量,得到的数据量极大,计算机发送接收这些数据

2 天线近场测量机械扫描子系统

任何近场测量理论中,幅度和相位数据是在某些特殊面上按规律的方式获取。给定面的几何形状,数据和参考天线(探头)的特性,优先选用一种高效的变换来确定待测天线的远场特性。最常用的扫描技术有平面近场(PNF),圆柱面近场(CNF)和球面近场(SNF)。每一种都需要将平移与转动相结合完成理想面上的扫描。 3.1 PNF近场扫描

PNF扫描要求较小的暗室环境,校准技术和相当简单的数理分析。该技术最适合于像碟状或相位阵列这样的高度定向天线,这类天线几乎所有的接收和发射的能量都会通过平面扫描区域。

矩形扫描是一种常用的PNF技术,如图1所示,扫描的数据是在网格上特定的x,y点处收集得到。探头放置在沿y轴的直线滑轨上。y轴滑轨安放在沿x轴向的第二个滑轨上。

图1 PNF近场扫描

平面近场扫描仪由一对正交安装的导轨组成,其中竖直安装的导轨在水平安装导轨上面,探头安装于竖直导轨上扫描整个平面。扫描平面一般与待测天线的口面平行。扫描架需调整至x轴和y轴垂直。

采样是测量数据中两相邻数据所需的最短周期。在x和y方向小于λ/2的步进间隔一般都能满足采样准则。[page]

当然,理论上假定无限大的扫描平面在实际应用当中很显然极不现实。为了确定扫描区域是否足够大,通常是将某扫描区域边缘之外的数据设置为零,并观察计算出的远场变化多大。当远场变化比较明显时,说明扫描区域内测得的数据量过少,应适当的增加扫描点数,从而保证经变化得到的远场近似于待测天线的远场。减小由边界截断带来的测量误差。

PNF还需考虑各种校正处理,如:电缆抖动、探头位置、阻抗失配、热漂移校准等。这些校正理论的发展很大程度上提高了近场扫描的测量精度,促进了近场扫描在实际中的应用。

3.2 CNF近场扫描

典型的柱面近场扫描设备是将待测天线安装于转台之上,扫描探头沿平行于转台转轴的直线方向上移动。通过合理地配置这些运动,准确的定位需要测量的网格点位置,保证探头能够在柱面特定的网格点处获取近场振幅和相位数据。同样通过计算机对数据经近场远场变换处理,来得到天线的远场特性。同平面扫描相比,柱面扫描对转台控制更为复杂,即对机械系统提出了更高的要求。由于其是对待测天线周围柱面空间的场进行测量,那么,对于波束俯仰角较小而方位角范围较广的天线,这种测量的结果相对于平面扫描信息量更大,误差更小,对天线特性的反映更为准确。

图2 CNF近场扫描

柱面测量系统中,待测天线位于方位转台之上,其口径面边缘垂直于地面,探头沿垂线方向上进行扫描,位于方位转台之上的待测天线沿圆周运动。转动待测天线,垂直方向上扫描一次,一周之后,可完成整个柱面的扫描,该系统的示意图如图2所示[4]。二者的组合运动在柱面上形成了Z,相互关联的采样格点。

测试中,需调整扫描轴是其彼此对准并保证铅垂到位。探头运动的直线扫描需调整到平行于方位转台的转轴,并垂直于大地。方位转台必需保证在指定的扫描范围内能稳定地圆周运动,并且转轴平行于探头扫描线迹。

同样,柱面扫描的采样也做如下规定:根据奈圭斯特准则,相邻数据的采样间隔不应大于最高频率所对应波长的一半λ/2,以保证重要的频谱分量都被囊括其中。每行的间隔可参照平面扫描,扫描的行数也可通过观察行数变化对远场的变化的影响程度做适当调整,也可通过计算机对天线辐射特性的数值计算仿真优化测量范围。

3.3 SNF近场扫描

天线测量技术的理论基础是传输方程,其是表征一个天线在另一个天线发射状态下的接收信号。第一个天线的接收特性和第二个天线的发射特性都表达于传输方程之中。

在SNF扫描中,数据从围绕待测天线的球面上采集得到。这种方法可用于测量任何天线,特别是对于全向或近似全向的天线特别有用,这类天线不适合采用平面和圆柱面理论进行测量。

球面近场扫描中,导轨转动的精度及控制对测量结果的影响相对于其他两种方法,其要求较高,实现的难度更大,但球面测量是对天线周围空间的完整测量,其最能完整的体现天线的辐射特性,理论上的误差最小,测量的精度最高,也是未来近场测量发展主要的趋势。

在测量球面(A,θ,)的任意点上,探头必需指向球心并对两个正交极化进行采样。理论上,两个天线谁相对谁运动并不紧要。或许待测天线固定、所有旋转由探头实现,或许待测天线两轴旋转、x探头绕轴旋转,或许测天线一轴旋转、探头绕两轴旋转。

球面装置的一个例子是由一个弧形臂和转台的共同组成,该拱形臂使得探头可在一个圆弧上运动,转台可使天线绕方位角轴旋转。圆弧平面可能垂直,方位角轴位于平面内且垂直此平面。

4 结论

PNF方法对高度定向天线效果最好。其可用于定向天线的增益测量,但其对覆盖的方向图区域的限制对直接测量会带来困难。

CNF方法对测量扇形束型天线最有用,如手机的基站天线,其辐射方向图大部分限制在小范围的高度上。

在SNF方法中,测量面的截断是非必要的,因而,其用于精确的确定任何类型的天线远处的旁瓣。因为可覆盖宽泛的角度范围,其专门用于测量近各向同性天线,如移动电话、手机的天线,以及测量天线的定向性。

总的来说,平面近场技术是测量超低副瓣天线等一系列高性能天线最为理想的测试手段。面近场测量所产生的误差进行分析,提出相应的补偿措施。因此,平面近场测量误差分析与补偿技术是平面近场技术测量超低副瓣天线能否实现的关键技术,其研究具有十分重要的实用价值[5]。对平面近场测量而言,其主要误差源有18项,这些误差源大致分为四类,即探头误差、测试仪表误差、环境误差以及计算误差。这些误差源所产生的误差对大多数常规天线测量的影响几乎可以忽略不记,但对超低副瓣天线等一系列高性能天线的测量,这些误差源所产生的误差几乎每项都必须予以补偿或修正。这些补偿与修正也不断促进着近场扫描法的推广及应用。

由于近场扫描法中近场——远场变换理论中,需要近场的幅度和相位信息,而场的相位信息是难以测量,最近国内外提出近场无相测量技术,通过只测量近场扫描面的幅度分布,可直接获取场的相位信息,进而完成天线的远场特性的测量。 随着科技不断进步,天线近场测量将逐步成为天线测量最实效、便捷、精准的测量技术。

关键字:天线  近场测量技术  测试测量 引用地址:天线近场测量技术探讨

上一篇:单脉冲二次监视雷达天线波瓣测量方案研究
下一篇:射频电缆的无源互调测试

推荐阅读最新更新时间:2024-03-30 22:50

超高性能微波天线馈源系统的设计
本文介绍了用于微波接力天线馈源中的C波段超高性能馈源系统的设计方法,利用高频结构仿真软件对其进行了优化设计。对一些重要的和不易调整的尺寸用加偏差的方法来确定加工精度。计算结果与实测结果吻合的较好,在4.4~5GHz的频段中,整个馈源系统的驻波优于1.05,交叉极化鉴别率优于-40dB。   关键词:超高性能馈源系统 高频结构仿真软件 一、 概 述   近几年来,我国通信事业的飞速发展,微波接力通信天线也不断地发展和完善,卫星通信系统的传送网功能主要通过光纤,地面微波,空中卫星等通信方式来完成。从微波传送系统所采用的新技术及传送容量的角度来看,新一代的同步数字系列SDH微波通信系统替代了传统意义上的PDH微波通信。为适应正在兴起
[模拟电子]
超高性能微波<font color='red'>天线</font>馈源系统的设计
天线外部匹配网络推荐
随著物联网设计的兴起,工程师常常面对无线开发的各种挑战,天线匹配就是其中一个相当棘手的难题,因此,Silicon Labs(亦称“芯科科技”)特别制作一篇知识库文章,帮助工程人员掌握天线外部匹配网路的开发技巧。 两种主要的天线调整途径 有些形式的天线在不用外部匹配电路(例如印刷倒F天线)的情况下就能固有地匹配到目的输入阻抗(典型的单端50欧姆)。然而,电路板的大小,朔料外壳,金属屏蔽罩,和天线附近的元器件都影响天线的性能。 为了得到最好的性能,天线可能需要调整,可经由下列两种途径实现: 天线走线结构的尺寸调整。 应用外部元器件调整。 调整外部元器件是优先考量 通常客户设计不愿做PCB Layout更
[物联网]
<font color='red'>天线</font>外部匹配网络推荐
RFID表征天线性能的主要参数
  1  天线的输入阻抗   天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。在我们日常维护中,用的较多的是驻波比和回波损耗。一般移动通信天线的输入阻抗为50Ω。   驻波比:它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,
[网络通信]
交叉领域的测试测量 软件定义了一切
如果要了解测试 测量 技术在最新的行业发展趋势中所发挥的作用,一年一度的NIDays大会是一个很好的窗口。今年NIDays Asia大会的主题是“全力推进明天的科技”。 NI在去年重新定义了他们的新的战略愿景——做“软件定义的自动化 测试 测量领域”的领导者。围绕这一新的战略愿景,该公司对业务进行了重组,核心业务包括半导体、交通运输、航空航天/国防和政府,以及电子、能源、 机械 和院校。 NI在核心领域的客户分布 NI大中华区销售总监乔巍认为,类似汽车和航空航天这类市场都更具有未来的想象空间,“汽车市场目前虽然不太景气,但从研发细分来看,对未来技术研发的投资还是在增加”乔巍说,“这两年中国的商业航天趋热,商业飞机、商
[汽车电子]
交叉领域的<font color='red'>测试测量</font> 软件定义了一切
疑一加5真机图再曝光:弧形天线+双摄像头
一加旗舰手机一加5或将会在6月发布,同时也有不少媒体曝光了一加5渲染图,从图中可以看到一加5的一些设计特点,但是消息准确度少粉底。现在又有网友曝光了一加5手机的图片。 图片说明   此次曝光的渲染图显示,一加手机5将会采用穹顶天线设计,这与之前曝光的微缝天线有很大不同,另外这次曝光的的设计图是三张不同的设计,据称一加手机5最后设计将从这三张当中选出。   据已经曝光的消息,一加5在外观设计上已集成了部分一加3的设计元素,但是整体圆润,泰坦方面如采用了竖排双摄像头设计,保留了3.5mm耳机接口,这对于用户来说是个不错的消息,前置也是双摄像头,屏幕外层应该覆盖了弧面玻璃,背部似乎还是金属材质。   早前消息称,一加5将采用5.5英
[手机便携]
125K非接触ID卡读卡器设计
0引言 无线射频识别(Radio Frequency Identification,RFID)是利用感应、电磁场或电磁波为传输手段,完成非接触式双向通信、获取相关数据的一种自动识别技术。该技术完成识别工作时无须人工干预,易于实现自动化且不易损坏,可识别高速运动物体并可同时识别多个射频卡,操作快捷方便,已经得到了广泛的应用。 目前存在的一些读卡器,都需要读卡芯片作为基站,成本较高。本文介绍了一种采用分立元件构成的125 kHz RFID阅读器,电路结构简单,成本极低,用于读取EM4100型ID卡。 1 RFID系统的分类 RFID系统的分类方法有很多,在通常应用中都是根据频率来分,根据不同的工作频率,可将其分为以下四种:(1)
[单片机]
125K非接触ID卡读卡器设计
线圈模块封装用于非接触式身份证:英飞凌提供集成芯片和天线的完备解决方案
电子身份证(eID)和护照的核心在于强有力的耐用型安全解决方案。采用“线圈模块”(CoM)封装的安全芯片在这一点上具备明显优势。英飞凌科技股份公司现推出用于非接触式身份证的一款完备解决方案,壮大其全球公认的CoM产品组合。全新SLC52安全芯片现已上市,与卡体天线集成于聚碳酸酯整体镶嵌物(Inlam)。 传统的芯片封装为焊接在或粘在卡式天线上。不过,借助CoM封装,芯片模块通过无线射频(RF)与卡体天线通信。该设计不再需要复杂的机械设计,卡片本身变得更坚固耐用,生产成本也相应降低。 CoM封装已用于诸多兼有接触式和非接触式(双界面)支付卡和电子身份证。但是,CoM工艺也能为纯粹的非接触式电子身份证和护照带来明显优势:
[安防电子]
线圈模块封装用于非接触式身份证:英飞凌提供集成芯片和<font color='red'>天线</font>的完备解决方案
方向图可重构天线及其相控阵研究
1 引言 随着无线通信和雷达系统的不断发展,使得同一平台搭载的信息子系统数目增加,作为无线通信系统中信息出入必然通道的天线而言,其数量也相应增加,这样非常不利于综合系统的进一步发展,结构紧凑的可重构天线具有改善这种不利局面的巨大潜力。另外,相控阵所能实现的波束电扫描能够大大的拓展其应用范围,目前典型的相控阵能扫描到的角度仅为-45o 到+45 o,综合分析,造成相控阵的这种小角度扫描范围主要由两个因素导致,其一是天线本身的方向图特性,其二是互耦的存在,因此,如何拓展相控阵的扫描范围成为一个很热门的研究热点。从某种程度上而言,方向图可重构天线的提出能够解决这一问题。 本文提出了一种双频方向图可重构介质谐振天线,该天线具有两个谐振
[电源管理]
方向图可重构<font color='red'>天线</font>及其相控阵研究
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved