如何选择一个示波器?哪些参数是必须关注的?

发布者:chenfengy818最新更新时间:2015-01-14 来源: eechina关键字:示波器  采样率  分辨率  快速傅立叶变换  外部触发 手机看文章 扫描二维码
随时随地手机看文章
        市场上如此多种类的示波器,该选择哪一款呢?示波器的广告宣传中,往往会凸显带宽和采样率两个非常重要的参数。但是,还有哪些隐藏在说明书中的参数需要我们关注呢?
选择示波器的时候,我做了详细的记录,这里想跟大家分享一下,我是如何选择一台示波器的!我研究了市场上几个品牌的示波器,最后,选择了一款Pico示波器,所以,相对于其他示波器,我将会重点介绍这款示波器。但是,内容可能有些简单,因为我没有太多的示波器,所以不能将拍成照片放在文章中。我也不是Pico的员工,在这里我会尝试着放以一些其他有这个系列产品的供应商的例子来保持平衡。
这个系列由四个专题组成。下次专题二,我在讨论宽带和采样率。本次专题一将介绍示波器的物理特性:台式示波器和PC示波器的探头类型和数字输入。下一次,我将会讨论示波器的核心参数,像带宽、采样率、模数转换的分辨率。之后,我将会介绍运行在示波器上的软件和一些细节,比如远程控制,快速傅立叶变换(FFT),数字解码和缓存。最后,将会介绍其他的一些参数,像外部触发和时钟同步,还有总结一下我已经介绍过的示波器参数。
Ⅰ:如何选择一个示波器?先谈谈示波器的物理特性
一、你是想要PC示波器的还是台式示波器?
这是两种不同的设备类型,可根据需要去选择示波器的类型。很多人喜欢用台式示波器,因为它可以直接放在试验台上测试电路信号,而不需要配置一台电脑才能使用。也有人喜欢PC示波器,通过USB来连接到电脑上使用。我一直以来都比较喜欢于PC示波器。首先是它只需要占用很小的地方,例如,我可以将示波器垂直地放在桌子,这样就可以节省了一些地方(如图1所示)。



图1 垂直放置示波器


我喜欢PC示波器的另一个原因是,它能够用电脑的键盘和鼠标来设置示波器,尤其是在用高级触发时,键盘和鼠标更加方便。另外,当你想要进行屏幕截图或者存储数据时,直接在用鼠标在电脑上操作就行,而不必先保存在示波器内,然后再通过一个U盘或者其他类似设备将其拷贝到电脑上。
当然USB示波器也有一些缺点。人们抱怨最多的可能就是没有按钮控制功能,不过这个也是很容易解决的。
图2中你可以看到USB的“旋钮板”,那是我自己做的。旋钮的每次旋转都会发送一次“键击命令”,只要你的PC示波器激活自定义快捷键、改变输入范围和时基等功能。一般情况下,我还是用键盘和鼠标,因为我发现有时他们比旋钮好用。如果你喜欢这个设计,你可以在我的博客上找得到。


图2  自制示波器旋钮

拥有一款PC示波器也意味着你能够拥有一个大尺寸的屏幕。一款高端的示波器可以在12.1英寸的屏幕上显示,但是你可以用200美元或者更低的价格为你的电脑购买一个22寸的显示屏来显示波形。如果你的示波器的软件支持多个窗口的话,那你就可以像图3中那样来设置多个显示界面。



图3  软件显示多个窗口


对于我个人来说,我更加喜欢我的电脑上一次只显示一个界面。当然,如果你不想用你的电脑来配套示波器使用的话,这时你也许需要的就是一台台式示波器。
二、地线在哪里?
对PC示波器,人们抱怨最多的是它探头的地线跟USB的地线是连接在一起的!所以你需要确保在测试时,PC示波器和电脑的地线间没电压差。
其实,大多数示波器在进行测试时都需要考虑这个情况,不管台式示波器还是PC示波器。如果你用欧姆表来检测一下,你会发现那个 “探头地线”实际上也是和台式示波器的系统地连接在一起。至少我曾经测试我购买的几台其他品牌的示波器,都是这样的情况。因此对PC示波器存在抱怨是不太公平的。
你也可以选用差分或者隔离示波器,他们主要用来消除在不同输入端之间的接地回路问题。他们也能给您更多的测量灵活性。比如说,如果你想要测试经过“高侧分流电阻”的电压,你就可以用差分示波器来测量了,TiePieHS4 DIFF差分示波器就可以实现这种测量。当然,你也可以给普通单端示波器购买差分探头,同样可以实现差分测量。大多数的供应商都制作这样的探头(安捷伦泰克、PicoTech和Rigol等)。
三、输入信号类型
几乎所有的示波器都有直流耦合和交流耦合的输入,你有时可能想要去对比示波器的最小量程和最大量程。其实,不要太过考虑那些所谓的上限和下限,除非您有很特殊的要求。当您考虑示波器的最大输入范围时,请记住你很有可能需要用到10:1的探头,这就意味着一个有±20V的输入范围的示波器可以在10:1的探头的帮助下变成范围为±200V。
当考虑示波器的最小输入范围时,噪声是完全可以让你抓狂的!例如,示波器有一个1mV/div的范围,那么你就必须要考虑噪声的影响。测量一个非常小的信号时,一般不要在测量端使用有源探头。比如,你想要测经过分流器的电流的时候,是完全可以用差分放大芯片自己动手制作一个。[page]
除了真正的测量范围,你可能也会对“偏置范围”感兴趣。在DC耦合时,大多数示波器都能够去掉一个固定的电压(用偏置功能)。例如,你可以在一个最大1.0V的输入范围下测试1.2V的输入电压,因为示波器是可以先将信号上减少1V。当然,当你需要在一些固定的电压上去掉更小的信号时,将会更加方便。
另一种常见的输入类型是50Ω阻抗输入。正常情况下,这就意味着示波器可以在AC、DC和DC50输入类型间切换。DC50的意思就是输入是有50Ω的阻抗的。一般用到更高模拟带宽的示波器上有这个功能。例如,它可以测量一个50Ω阻抗SMA连接器端输出的时钟信号。另外,50Ω的输入阻抗可以简化示波器与其他的实验仪器进行连接的步骤(不用额外配置1MΩ转50欧阻抗转换器)。如果你也想要用一个低噪声的放大器去测量一个非常小的信号,那也是没有问题的,因为你可以准确地将低噪声放大器的输出关闭。
如果你最后需要DC50的终端,你可以购买一个50Ω的直通端子,最高配套1GHz 带宽的示波器使用。可以直接连接在示波器前端,从而获得50Ω的输入阻抗。
一个大型的示波器公司往往会有不同带宽、不同输入范围,不同型号的产品。比如说,Pico5000系列最高带宽200MHz, DC\AC高阻抗输入。Pico6000系列的示波器500MHz带宽及其以下的型号输入类型有DC\AC\DC50。6000系列1000MHz带宽的示波器下只有50Ω的输入阻抗。其他的供应商几乎也是这样:在最高的带宽下也是有50Ω的输入阻抗,中等带宽的示波器有DC\AC\DC50三种输入类型,低带宽示波器只有DC\AC模式。
四、探头的质量和类型
在日复一日的使用中,没有什么东西能够跟你的示波器的探头质量那样影响着你。这是你与示波器的互动桥梁。
大多数“标准”的示波器探头是跟图4中的照片一样的。


图4  通用探头


它们是可调档位从1:1到10:1的衰减,10:1是对输入信号衰减10倍。值得注意的一点是,在1:1的模式下,大多数的示波器拥有非常有限的带宽—一般是小于10MHz。然而在10:1模式下可能会有300MHz的带宽!另外,10:1模式下的负载更小。更高带宽的探头通常只有10:1模式。我猜想是因为高频时,频繁的切换探头衰减档位会损坏。
首先要检查的是探头的顶尖是否是可以移除的。如果你弄坏了顶尖,它是很方便的换一个顶尖,而不是把整个探头都更换了。如果你是在探测一个PCB板,它可以很容易探测测量点。当然,一般的探头都会有一个适配器,用于专门测试PCB的,而不是只有一个探头尖端。老款的安捷伦的1160A探头就是有这样一个尖端。
我很喜欢的一款是带弹簧夹的探头(图4中)。它的尖端比标准探头小一些,弹簧支撑的作用让它更加容易地与焊接接头相连。你可以使用一些力气来戳穿氧化层,弹簧支撑的器件可以让你准确地触摸到接头。另外,你甚至可以这样做—将探头穿过焊锡表面。它上面也有一些塑料的防护层,这些可以将标准的接口器件规格(例如1.27mm,1mm,0.5mm,0.8mm)加到TQFP\SOIC\TSSOP封装形式的探头。
图4是Pico6000系列标配的探头,可以有通过型号区分:TA150(350MHz带宽)或者TA133(500MHz带宽)。但是我要说明的是,安捷伦也在卖一款同样的探头—型号为N287xA—作为一种附件。相似的,力科也在卖类似的探头—PP007,罗德与施瓦茨也卖类似的型号—RTM-ZP10,同样也有相似的附件。但是我怀疑他们的探头出来自同一个供应商。根据你自己的需求和选项,如果你单独地订购这些探头的话,它的价格在$200到$400之间。
Pomona Electronics 也在卖同样的探头,型号为6491到6501(不同的型号,带宽不同)。一款150MHz(6493)的探头,它在Digi-Key、 Mouser 和Newark element14上售卖也就几十到一百美元。这个探头是跟一开始的弹簧式的不同的,但是如果你对带宽的要求不高的话,可以选择购买它。


图5  探测电路


如果你在使用一个高带宽的探头的话,那你要关心的是频率响应的平滑度。一个探头标称带宽1GHz,电压幅值在1GHz时会下降3dB。但是无良商家制造的产品不会有一个非常平滑的频率响应或者在-3dB点处没有下滑。
在使用高带宽的探头的时候,接地将会是非常的重要的一个问题。经典的鳄鱼夹也许不会消失!一个最简单的附件是跟在图5中显示的那样的。也许会有更多更加适合的可用的接地的配件,这些可以查一下探头自带的一些说明文件。
不要担心不能为你自己的探头配置附件。图6中显示的探头支架是我用一个可调的机械手制作的。


图6  为探头配置可调机械手


五、数字输入
最后,讲一下混合数字示波器,即,同一款示波器既有模拟通道,也有数字通道。这里也是个人的选择:也许你会想要一个单独的数字分析仪,或者是你希望将它内置到你的示波器中。
我自己选择了一个基于PC的单独的数字逻辑分析仪。数字逻辑分析仪可以以一个比较低的价格从很多供应商那里购买。根据我的经验,跟一个不带逻辑分析仪的示波器相比,带有逻辑分析仪的示波器更加不划算。当你在评价它的时候,一定要看清楚通道数、最大采样率、缓存大小和逻辑分析仪能够解码的信号种类。
当一个系统集成商建议你买一个示波器和分析仪组合在一起的仪器来获得数字和模拟信号的同步的时候,请记住这些仪器的一般都是可以输出一个触发信号的。所以如果你的示波器在开始捕捉模拟信号时,可以产生一个触发信号,那么你完全可以在数字逻辑分析仪同步捕捉同步的数据(反之亦然)。
六、内容预告:示波器的核心参数
这次我主要介绍了选择一台示波器时,需要考虑到的示波器的物理特性。下次将更多的介绍示波器的核心参数,像带宽、采样率和分辨率等。




       
Ⅱ:如何选择一个示波器?讨论示波器的宽带和采样率
这是如何选择一个合适示波器专题系列的第二章,它不是一个完整的选型指南,而是我研究之后所做的总结。其中可能介绍到一些您不曾注意到的细节,希望对大家有所帮助。
第一章主要讲述了PC示波器和台式示波器的区别,同时讨论了示波器探头的主要特点。本章主要讨论一下示波器的核心参数:模拟带宽、采样率、AD分辨率。
一、模拟带宽
目前已经有太多的文章介绍模拟示波器的带宽,所以这里我不再花太多时间来介绍。简言之,带宽就是功率的一半或者-3dB幅度时的频率,如图1所示,功率一半也就是电压的1/ , 例如,用一个100MHz带宽的示波器采集一个10MHz,1V的正弦波,此时示波器采集到一个标准的正弦波。随着输入信号频率的增加到100MHz时,采集到的正弦波的振幅变为0.707V左右。


图7 带宽是功率一半或者-3dB时的频率。如果输入一个固定振幅的波形,增加信号频率,-3dB的位置即是示波器的电压幅值为实际幅值的0.707倍。
[page]

不幸的是,实际应用中我们很可能需要测量的是方波(例如数字系统)而不是正弦波。因为采集方波需要远高于基本波形的频率。最常用的原则是选择一个带宽是待测数字系统最高信号频率5倍的示波器。例如,一个66MHz的时钟信号需要一个330MHz带宽的示波器。
我用Python 脚本编写一个模拟滤波器,先对方波进行滤波,然后绘制出滤波结果。图2 显示了分别用一个50MHz, 100 MHz, 250 MHz,500 MHz 带宽对50 MHz方波信号滤波的结果。


图8 用一个50MHz, 100 MHz, 250 MHz,500 MHz 带宽对50 MHz方波信号采样的结果


二、采样率
除了示波器的模拟带宽外,采样率也是非常重要的参数。采样率的单位是MS/s(Megasamples per second)或GS/s(Gigasamples per second)。一般情况下,各个示波器公布的采样率参数都是指单通道最高采样率。如果一台两通道的示波器,公布的采样率参数为1GS/s,两个通道同时使用时,每通道的最高采样率为500MS/s。
所以,你需要多高的采样率?对奈奎斯特定律熟悉的人,可能简单的认为采样率仅为待测信号带宽的2倍即可。但是当根据这个原则采集信号时,信号往往是失真的。当然,更高的带宽和采样率下,这个定律是非常适用的,例如,5倍的采样率。图3显示了用50MHz示波器采集25.3MHz的方波。此时,方波信号严重失真。然后,如果只将采样率提到到100MS/s,一下子还真无法认出是方波。与100MS/s的采样率相比,500MS/s采样率采集出来的信号更像是方波信号(但是由于示波器带宽的限制,方波还是被磨平了一些)


图9  用100MS/s采样率采集25.3MHz的方波信号,严重失真。用500MS/s采集出来的信号看起来有点像方波信号的。


三、等时间采样(ETS)
一些示波器有一个等时间采样模式,一个快速采样模式。如PicoScope 6000系列采样率为5G/s, 其在ETS模式下,单通道采样率能够达到200GS/s,四个通道同时使用时,ETS采样率高达50GS/s。
值得一提的是ETS模式下高采样率是通过AD采样时钟精确的相位偏移实现的。该模式适用于稳定的周期信号。因为一段时间之后,波形将重建。简言之,就是一个周期采集一个数据点,下一个周期在采集一个采样点,两个采样点有固定的相位差。采集多个周期之后,会将这些点合成一个周期的波形。
四、ADC分辨率
还有一个常常需要考虑的核心参数:AD分辨率。即模拟波形如何映射到数字波形的。一个8位的ADC表示可以将模拟波形分为28=256等份。例如示波器的测量范围是±5 V ,峰峰值10V,表示示波器能够分辨的最小电压为10V/256=39.06mV.
这也告诉我们数字示波器一个事实:选择尽可能小的测量范围,以便于获得更准确的测量结果。测量范围±1V,8位分辨率分辨的最小电压7.813mV。但是往往待测信号掺杂其他信号,例如一个带负载的开关,刚打开的瞬间会有一个7V的尖峰,然后才回到正常的0.5V。如果你想要测量该尖峰,那么你就不能用最小的测量范围。
一个12位的分辨率的示波器,当测量范围为±5 V(峰峰值10V),将模拟信号分成212=4096等份,最小可分辨电压为2.551mV。如果分辨率为16位,10V峰峰值电压范围被分为216=65536份,最小分辨电压0.1526mV。一般情况下,我们需要在高分辨率慢速ADC和低分辨率快速ADC之前作出取舍。但是Pico Technology 的柔性分辨率5000系列示波器是一个例外,因为它允许你动态的在8位、10位、12位、14位、15位、16位分辨率进行切换。不过分辨率的选择同时使用的通道数量和最高采样率。
一般的示波器都是8位的ADC分辨率,当然也有一些高分辨的示波器。但是这些高分辨率是固定的,无法改变。所以在购买示波器时,我们必须选择要买高分辨率的示波器还是高采样率的示波器(分辨率高,采样率相对就低一些)。有些聪明的示波器厂家说他们的示波器可以使用8-14位的分辨率,也可以选择不同的采样率。他们可以单卖采集板卡,让用户可以将原有的示波器升级到更高的分辨率。TiePie就是这样做的。除了之前提到的柔性分辨率示波器,Pico Technology 也有最高14位的固定高分辨率示波器。一些其他大的示波器厂家也有高分辨率示波器。例如 力科HRO高分辨率示波器(12位分辨率)。
许多示波器表明可以有等效高分辨分辨率或软件分辨率增强功能。这是通过滤波实现的一种软件增强技术。该技术可能对测量信号的带宽有一定的影响。千万要注意,一个实际12位,100MHz带宽的示波器跟通过8位分辨率,100MHz示波器软件增强技术实现12位分辨率是不一样的。
用示波器的FFT模式(通常称为频谱分析仪模式),我们可以看到高分辨ADC和增强的分辨率的不同。如果只需要在屏幕上观看时域波形,那么我们可能不会注意14位分辨率的精确度或者其他。但是,如果需要测量谐波失真(THD),或者其需要精确测试频率的应用,高分辨是直观重要的。


图10 不同分辨率下的显示效果





       
Ⅲ:如何选择一个示波器?讨论示波器的软件特征
该系列我们将来讨论PicoScope示波器的软件特征,例如,远程控制、FFT、数字解码和缓存大小等。
前两个系列,我介绍了PC示波器和台式之间的区别,探头的物理特性和示波器的核心参数,如模拟带宽、采样率和ADC分辨率等特性。本系列将介绍示波器的其他特征:外部触发和时钟同步,并且我会总结一下所有我讲过的东西。
一、储存深度
数字示波器通过ADC转换器将模拟信号转换成数字信号,然后将其存储在存储器中,所以示波器的一个重要特征就是它能够储存多少样本,即缓存深度。这个参数在高速采样率下尤为重要---例如,在采样率5GS/s时, 一百万个样本(1MS)意味着能够存储200μs的数据。一般情况下,一台低价位的示波器只有很小的缓存空间。在网上你可以看到一款这样的示波器Hantek DSO5202P,采样率1GS/s 的采样率,但是只卖400美元,因为它的记录长度只有24KS而已,即只能记录24μs的数据。你也可以发现缓存更小的示波器,例如一款型号为Agilent TDS2000C的示波器就只有2.5K的缓存深度。如果你只关注触发信号,那你可以选用更小缓存的示波器。但是,当用触发也无法捕捉到一些特殊故障时,你可能就需要一个大的缓存来捕捉长时间连续信号,以便于从中查找故障。小的缓存意味着在你很难去获得你想要的信号。
即是一些示波器声称大缓存,但是实际上,我们想要获得全部的缓存也是有困难的。PS6403D示波器是PicoTech的其中一款1GS缓存的示波器,在配套的软件上可以设置示波器的所有参数,但是该软件实际上的将驱动缓存限制在500MS左右。然而我不得不承认这真的是非常让人印象深刻的,直到存储器存满之前,一直能够保持5GS/s的采样速度,就算它建议的存储器带宽是40Gb/s!。借助于分段存储器(这个将来会介绍)我们可以用到全部的缓存,但是它不能用来捕捉一个连续的1GS大小的数据长度。
二、FFT长度
示波器的广告总会在间接地提到它们有“频谱分析仪”的功能。事实上,示波器只是对采集到的信号进行了FFT变换。一个明显的区别是频谱分析仪有一个“中心频率”,你可以在中心频率的任意一侧测量实际带宽。通过扫描中心频率,你可以得到频域中一个非常大范围内功率图表。
示波器的FFT的模式,没有什么类似于中心频率的东西。它测量从0Hz到某个特定的频率(这个上限频率往往是可以调节的)。这个限制往往是示波器的采样频率的一半,但是也会受示波器的模拟带宽的限制。示波器的频谱分析中有一个参数“FFT长度”,表示多少采样点被用来计算FFT。这个参数也可以用图表中 “bins”的数量(例如水平频率分辨率)表示。有些的台式示波器也许会有一个固定的FFT长度,例如只有2048个FFT长度。这个可以看得到0-100MHz 的所有频率,但是如果你想要放大观测95-98MHz这个范围频谱该怎么办呢?因为示波器实际上是从0Hz开始计算FFT,所以这个范围只能显示大约60个采样点的频谱。这就是为什么我们需要非常长的FFT长度—它允许您放大信号并观测局部信号频谱细节。你可以降低示波器的采样率,放大观测0Hz附近的频谱。当然,如果你想要精确的测量1-10kHz范围的频谱时,设置合适的采样率,让2048个采样点分布在0~20kHz附近,当你放大波形的时候你也可以得到正确的细节。这种情况下,2048个FFT长度也是没有问题的。
另外,为了提高水平方向的细节,更长的FFT长度可以降低噪声。如果你想要把示波器来进行频谱分析,那么更长的FFT长度将助你一臂之力。就像在图1中显示的那样,是用控制板的磁性探头来进行FFT。在这里我放大了频谱的一部分,左边是2048个点的,右边有131072个点。


图11  不同FFT长度的频谱分析对比图


选择示波器时需要注意:低端小缓存示波器往往有很短的FFT长度。当然也有一些深度缓存示波器,它们却拥有很短的FFT长度,例如Rigol DS2000\DS4000\DS6000,从这些型号的规格书中看出,虽然他们有131MS的缓存深度,它们只用了2048个采样点。相比之下,PC示波器是比较好的,因为它们可以在更加高性能的PC上做FFT分析,而不是仅仅局限于DSP处理器或者是一个FPGA处理器。比如说,Pico 6403D允许FFT的长度达到1,048,576个采样点。[page]
三、段存储器
我认为示波器必须具备的一个功能就是段存储器。这就意味着你可以设定一个触发事件,连续采集多个的波形。对于一些偶发性毛刺,段存储器可以帮助您更快的找到它。
图2中显示的是PicoScope软件上的段存储器查看器,可以设置高达10,000存储段,同样Rigol DS4000和DS6000中也有该功能,它们称之为“帧”,最高记录200,000帧。一旦捕捉了一定数量的数据段/帧,你可以手动查看各个缓存,从中查找错误,或者用一些其他的功能,例如遮罩测试高亮显示各个帧/存储段中的异常数据。


图12  段存储器显示窗口


有些示波器会把段存储器作为一个插件,例如,安捷伦示波器中除了3000X系列默认有段存储器的功能外,其他系列的示波器默认的没有这个功能,除非花钱额外购买段存储器插件。
四、远程控制和流模式
一个更先进的方法是用电脑来控制示波器。如果你想要把示波器用在电子产品的故障检测中,那你就需要详细了解一下示波器提供的各种功能。
PC示波器在这方面就有很大的优势,因为它本身就是用来和电脑交互的。似乎大多数主流的PC示波器供应商都提供各种语言下编程接口(API):我发现大部分PC示波器都提供了C, C#, C++, MATLAB, Python, LabVIEW和Delphi开发例程。一些不出名的PC示波器是没有API函数的,所以你要仔细核对待购买的设备是否具有该功能。
大部分的台式示波器也有发送命令的功能,一般都会遵循一些的标准,例如VISA标准。但是,我发现这些台式示波器似乎都有一个比PC示波器更慢的接口。也许是因为,对PC示波器来说,与PC接口的是一个至关重要的功能,而台式示波器只是作为一个附加的功能。当然,这说法也不是百分之百成立的,比如说一款Teledyne LeCroy的示波器,它似乎可以提供给你一些类似于PC示波器的功能(如多重窗口)。
除了控制示波器,另一个让人感兴趣的功能是流模式。流模式的数据是不经过示波器的缓存,而是直接地通过USB接口或以太网等PC接口传输到电脑上。与简单通过命令来控制示波器相比,这个功能更加复杂,因为想要通过USB获取更快的数据流绝非易事。但是,流模式却带来了更多有趣的特性,例如,你可以把你的示波器当作软件定义的无线电(SDR)的一部分。如果你真的想用流模式,请务必要仔细地阅读说明书上关于流模式的限制的说明。
五、串行解码
串行解码是另一个非常有用的功能。如果你有一台数字逻辑分析仪,那么它一般都会包括串行解码的功能。但是,在示波器中,这个功能也是非常有用的。如果你要查找一个偶发的奇偶校验错误,可以用示波器上的模拟显示来观察这个错误,看看是由于信号弱导致的还是因为噪声引起的。
虽然很多示波器都带有这样的功能,但是很多是要求你另外购买的。一般情况下, PC示波器包含该功能且不需要额外付费,而台式示波器会要求你另外付费。比如,在DS4000系列中,它要500美元,在安捷伦3000X系列中,要800美元,在泰克的3000系列中,需要1100美元。根据不同的供应商,它可能包括多个协议或者只是包括一个协议。但是如果你想要所有的协议,它的费用可能比示波器本身还要贵。一般情况下,购买一个PC逻辑分析仪会比购买一个示波器软件包还便宜。
我选择PC示波器的另一个主要原因就是额外的功能不需要额外的费用!不用串行解码时,你也可以观察信号,看看是否有噪声。有了内置解码功能,你可以很快地辨别出错误发生的位置。我录制了一些串行解码的例子,点击链接进入http://v.youku.com/v_show/id_XODQ0Mzc2MjM2.html
六、软件特征
我已经好几次在前面提到,你应该检查一下软件真正包括了哪些功能。你也许会惊讶地发现一些需要付费的功能—例如,有时甚至FFT的模式或是高级数学通道的功能都是需要额外付费的。
我们常常希望能够以一个合理的价格购买示波器的所有功能。在我之前也提过,安捷伦最近就声称他们将会在一个价格里面包括所有的功能。一旦这个实现了,那么就意味着只要500到1500美元就可以买到所有协议的解码功能和所有的计算功能。庆幸的是,其他的供应商将会跟随着这个,也许最后会在购买价格里面包括这些功能。
如果您正在考虑购买PC示波器,即是没有示波器硬件,你也可以到PicoTech的官网上免费下载和试用软件,这可以让你体验一下PicoScope软件的用户接口有多么方便。一般情况下,你都是需要考虑多长时间能够学会使用示波器的各种操作。
七、总结
这一次,我介绍了很多功能,包括用软件来运行示波器。下一次我将会深入探讨一下示波器其他的功能,比如外部触发和时钟同步,这些会让整个专题看起来更加完善。




       
Ⅳ:如何选择一个示波器?谈谈触发、信号发生器和时钟同步
在这一关于如何选用示波器的系列的最后一部分,我将要讲述一下触发、信号发生器和时钟同步,并且,我也会用一些总结来结束。
在之前的文章里包括了:第一部分,讨论了探头和台式和PC示波器的物理特性;第二部分,举例说明了核心的特征,例如带宽、采样率和数模转换器;第三部分,主要是介绍了软件。这些介绍仅仅是我个人的一个研究的记录,而不是一个完整的指导书。但是我希望它们对你是有用的,在你们选择示波器之前可以参考一下里面提到的一些要点。


图13 使用pico示波器的任意波形发生器来测试连续信号的边界

一、触发方式
正确地触发您的示波器可以让您获得更加有用的波形。最基本的触发是一个“上升沿”或者“下降沿”,这个大部分人都会知道的。
是否要选用一个更加高级的触发方式,这个是根据使用方案和示波器的一下其他的特征来考虑的。如果你有一个非常长的缓存深度或者是快速记录一系列波形的能力,你可能就能使用一些基本的触发,因为你可以轻易地将那些你不要的波形去除掉。如果你的缓存深度不够,那你就需要选择一个在确定的时间里的触发。
在我详细地介绍其他的方式之前,我想要提示的是你有时候也可以利用外部的设备来触发。比如说,你也许有一个拥有无比优越的触发机制的逻辑分析仪,当这个逻辑分析仪有一个“外部触发”,那你就可以用你的逻辑分析仪来触发你的示波器。
下面开始介绍其他的触发方法。有很多办法来寻找一些“异常的”脉冲,比如找一些比某些长度短的或者长的错误或者一个比规则的高度低的脉冲(也叫矮脉冲)。通过了解你的示波器的触发和增加一些创意,你可以把更多的错误找出来并修正。比如说,在对一个嵌入式的控制器进行检错并修正的时候,在一个任务进行的时候你可以将它紧紧地与某一个I/O口相连接。在运用触发来寻找“丢失脉冲”的时候,你可以在你的系统有冲击的时候来触发你的示波器,可以尝试着看一看这个错误是否是一个电源引起的错误。
如果你是在操作一个数字系统,一定要看一些那些可以在很多协议上工作的触发。比如,有些示波器就有这个性能,但是你将会需要一个附加的功能来对这些协议进行解码。事实上,大多数的台式示波器看起来都有这个性能,你只需要付额外的钱来使用它。
二、外部触发输入
大多数的示波器也有一个“外部触发输入”。这个外部的输入不会在显示屏上显示但是可以用来进行触发。特别是这个意味着你的触发通道不会跟你的数模转换通道冲突。所以当你想要一个通道上的完整的采样率但是又不想触发其他通道的说,你可以用“外部输入”作为你的触发。
拥有这些功能摆在前面板的示波器使用起来是相当的方便的,又或者你可以在设备的后面找到这个“触发输入”。
三、任意波形发生器(AWG)
这个严格上不是一个示波器必备的功能,但是一些包括发生器的示波器也是值得选择的。这是一个标准的“信号发生器”,它可以生成例如正弦函数、方波和三角波等波形函数。一个更加优越的叫做任意波形发生器的功能,让你可以生成任何你想要的波形。
以前我也有一个非常古老的示波器叫做HS801也有这样的任意波形发生器的功能。控制软件可以让他非常轻易地生成正弦函数、方波和三角波,还有一些其他的波形。但是,生成任意波形的唯一的办法是将你在其他的应用中创造的波形文件下载下来,这就意味着我根本就没有用到“任意”的这一部分的功能。所以这里就有一个经验是一旦你想要购买一个AWG的时候,请记住一定要确保它的软件是可以使用功能的。
AWG也许也有一些其他的不同的特殊的功能,比如寻找跟随着采样率变化的最大的模拟带宽。请记住一个特殊的规律:一个200MS/s 的数模转换速率可以假定拥有一个100MHz的模拟带宽,但是这个信号基本是没有用的。你可以生成某个频率的正弦信号,甚至你可以生成一个更低频率的正弦波(比如10MHz),它看起来是完美的,因为DAC的滤波器对这样的高频率会有一个平滑的作用。
更好的系统将会有一个低通滤波器去约束谐波,利用的是几倍于输出的滤波器平滑的DAC数模转换器的采样率。在pico的示波器6403D中,我使用了一个可以生成20MHz信号但是拥有200MS/s的数模转换采样率。相似的,也有HS5-530也有30MHz的信号带宽,也相似地应用了240MS/s的采样率。一个5到10倍于模拟带宽的采样率看起来是比较标准的。
在示波器上添加AWG功能开启了一些其他的新的有用的功能。当实行一系列的协议解码的时候,你可能会想要知道当波特率轻微的变化的时候发生了什么事。你可以快速地通过重复记录在示波器上的一系列的从AWG复制过来的数据包找到这个测试,并且调整AWG的采样率去让波特率轻微地降低或者是增加。
四、时钟周期
最后的一项实用的功能是:在实际的应用中,你可能会需要跟外部设备同步采样率。示波器将会有两个功能去做这个。一个是将会从示波器输出一个时钟信号,另一个将会允许你把一个外部的时钟添加到示波器中。
一个常见的应用是在多个示波器中同步捕获的信号。你可以在任何你想要用一个同步捕获办法的应用中使用这个。例如,当你想要把示波器当作是单数据速率的一部分的时候,你也许想要采样的信号跟一个重新获得的时钟同步。
这个输入的时钟的周期经典值是10MHz,虽然一些设备会允许你在几个可选的频率中选择。如果这个时钟源是其他设备的任何东西,你也许不得不做一些时钟条件去将它变成一个时钟源边缘。
五、总结和相似的一些结论
在四个星期的时间里,我尝试着通过解释几个在选择示波器的时候应该考虑的事项。就像前面所说的,因为我拥有的是pico示波器,所以一些例子经常是设计到picoscope的。但是所有的都可以跟你可能拥有的任何的示波器有关联。
在选择一个设备的时候,我的做法是下载使用手册并且仔细地研究它,特别是一些你发现的最重要的特征。虽然说明书会忽略一些细节,但是用户手册中经常会标明你将要接触到的一些限制的功能,比如FFT长度或者你可以得到的储存深度。
关键字:示波器  采样率  分辨率  快速傅立叶变换  外部触发 引用地址:如何选择一个示波器?哪些参数是必须关注的?

上一篇:偏置范围高达±24V的低噪声示波器探头
下一篇:高压差分测量专用的宽频带示波器探头

推荐阅读最新更新时间:2024-03-30 22:52

2015年智能手机面板分辨率之趋势
    随着低价智能手机市场的快速成长,以及中国电信补贴政策的改变与新兴市场的崛起,碍于成本的压力,品牌与系统厂对于2015年智能手机的分辨率规划有着很大的改变,对于往FHD(1080x1920)以上的高分辨率面板发展的态度不如以往高度积极,但也不表示高分辨率发展趋势会因此而停止。智能手机与其他应用产品的不同在于面板的分辨率必须与应用处理器(Application Processor)与内存(Memory)等其他重要相关零组件配合,即使面板本身可以不断往高分辨率发展,并不代表品牌或者系统厂就会采用,必须在耗能、成本与其他整体应用的考虑之下才会决定面板的分辨率。 面板厂规划在2015年提供HD(720x1280)与FHD(1080x1
[手机便携]
示波器那些事儿--之带宽
带宽决定着示波器测量信号的基本能力。在信号频率提高时,示波器准确显示信号的能力会下降,带宽这个指标表明了示波器能够准确测量的频率范围。 示波器带宽是指正弦曲线输入信号被衰减到信号真实幅度70.7%的频率,称为-3dB点。如图所示: 如果没有充足的带宽,示波器将不能解析高频变化,幅度将失真,边沿将消失,细节将丢失。如果没有充足的带宽,示波器的所有功能和浮华都没有任何意义。 任何信号都可以分解成无数次谐波的叠加,从频域来理解,带宽选择的总原则是:带宽能覆盖被测信号各次谐波的99.9%的能量就足够了。带宽选择的根源就在于:我们不能直观地知道被测信号能量的99.9%对应的带宽是多少。 示波器的带宽当然是越高越好 这句话从某种意义上
[测试测量]
<font color='red'>示波器</font>那些事儿--之带宽
示波器显示波形的原理
如果只在竖直偏转板上加一交变的正弦电压,则电子束的亮点将随电压的变化在竖直方向来回运动,如果电压频率较高,则看到的是一条竖直亮线,如图16-2所示。 要能显示波形,必须同时在水平偏转板上加一扫描电压,使电子束的亮点沿水平方向拉开。这种扫描电压的特点是电压随时间成线性关系增加到最大值,最后突然回到最小,此后再重复地变化。这种扫描电压即前面所说的 锯齿波电压 ,如图16-3所示。当只有锯齿波电压加在水平偏转板上时,如果频率足够高,则荧光屏上只显示一条水平亮线。 如果在竖直偏转板上(简称Y轴)加正弦电压,同时在水平偏转板上(简称X轴)加锯齿波电压,电子受竖直、水平两个方向的力的作用,电子的运动就是两相互垂直的运动的合成。当锯齿波电
[测试测量]
<font color='red'>示波器</font>显示波形的原理
示波器基本原理之三:存储深度
1. 示波器采集存储器的重要性 采集存储器是示波器的重要组成部分。在简易的示波器中,采集存储器是由一个负责采集模拟信号的前端组成;随后将这个信号发送到模数转换器进行数字化处理。在数字化之后,信号的信息会被储存到存储器(采集存储器)中,然后进行处理和绘制/显示。示波器的采集存储器与采样率直接挂钩。存储器的容量越大,示波器的采样率就会越高,您就能捕获更长时间的波形。采样率越高,示波器的有效带宽就会越高(有效是指高达示波器前端的最大带宽)。 存储器深度/((时间/格设置)* 10 格)= 采样率(高达 ADC 的最大采样率)。例如,假设时基设置是 160uS/格,最大存储器深度为 4,000,000 个样本。算出的采样率是 4,000,
[测试测量]
<font color='red'>示波器</font>基本原理之三:存储深度
精确测脉冲,示波器带宽要多高?
一波未平,一波又起。又有用户来投诉示波器和波形发生器这一对夫妻了:“我新买了33250A,用它输出50MHz的脉冲,怎么示波器观察像正弦波啊?你这台33250A有问题吧?但如果把信号改为10MHz的方波,就看上去是非常好的脉冲”。这位用户投诉的33250A,是安捷伦80MHz的函数和任意波形发生器,可以产生可变上升沿的50MHz的脉冲。上升和下降沿小于5ns. 我们首先按照常理回答这个用户:“一般用户理解脉冲,通常是方方正正的,但这是不可能的,因为这需要无穷快的上升沿,这这就意味这信号带宽无穷大,不仅难以实现,而且会带来更多的电磁辐射问题。因此,如果示波器测量出这个方波的上升沿不于5ns,就应该没问题。”但用户随后跟了一句:“我测
[测试测量]
精确测脉冲,<font color='red'>示波器</font>带宽要多高?
示波器如果用bnc线与被测信号直接连接,还需要校准吗?
示波器无源探头频率补偿(不是问题中所说的阻抗匹配,这是完全不同的概念,作用原理也是完全不同的)是个老生常谈的问题,搞清楚这个频率补偿用来补偿什么是问题的关键,先给出一个思考题:1X的无源探头需要频率补偿么? 如果学生时代的考试中遇到这样一道题:示波器的输入阻抗是多少?回答1MΩ就能得满分了。如果问一个电子工程师同样的问题,如果回答是1MΩ,那只能算勉强及格,因为几乎所有的示波器输入端口的面板上都会标输入阻抗1MΩ||xpF,而你却忽略了最常用仪器中非常重要的一项参数。 通常的示波器输入阻抗在1MΩ||15pF,10X无源探头为了实现10倍的衰减,会在探头的最前端串接9MΩ的电阻,简化的原理图就像下面那样。稍微思考一下就知道
[测试测量]
<font color='red'>示波器</font>如果用bnc线与被测信号直接连接,还需要校准吗?
使用示波器进行信号频谱分析(FFT)的设置教学
对信号中的频率分量进行分析是十分重要的,因为他们常常会在设计中引起噪声,一旦超出允许的公差,就可能进而导致器件发生故障功能失常。严重的还可能导致电压尖峰,损坏器件。如果我们在设计的时候没有进行正确的测试,那么上述问题就很可能发生。那么如何对信号进行频率分量的分析呢? 也许大家会认为这个活只有频谱分析仪能干,但实际上示波器也能部分胜任,示波器除了时域分析外,还有一个FFT的功能,就可以用来做这个事。FFT是快速傅里叶变换的缩写。简单的说,FFT其实是一种算法,可以帮助我们对时域信号进行分离,然后再将这些分离的信号转换到频域,此时示波器将从时域转换成频域,显示的是信号幅值与频率之间的关系。 如下gif图所示,可以清楚的看到示波
[测试测量]
使用<font color='red'>示波器</font>进行信号频谱分析(FFT)的设置教学
分辨率新技术让研究进入单细胞内RNA的世界
  据美国物理学家组织网4月25日(北京时间)报道,美国麻省理工大学布罗德学院开发出一种高分辨率新技术,提供了多个窗口研究核糖核酸(RNA)的世界,让科学家能深入到单个细胞内部,观察RNA“机器”运转的各个步骤,并在其发生故障时检查问题出在哪里。研究论文发表在4月24日的《自然·生物技术》网站上。   RNA在指导蛋白质合成过程中至关重要,其从出生、成熟到死亡的生命周期也是造成疾病的关键。对生物来讲,RNA生命周期对细胞的影响,比出生率和死亡率对一个国家人口的影响还要大。   细胞能调控RNA的数量水平,在一个细胞的生命周期中,RNA数量水平呈动态变化。新技术可以瞄准一个特定细胞,研究所有RNA的变化过程。通过在极短的时间
[医疗电子]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
更多每日新闻
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved