上一篇:LED显示电子电压表
下一篇:便携式兆欧表
推荐阅读最新更新时间:2024-03-30 22:52
理解示波器的频率响应及其对上升时间测量精度的影响
引言:传统上,示波器的频率响应是高斯型的,是由许多具有类似频响的电路元件组合而成的,传统的模拟示波器就是这个样子,从它的BNC输入端至CRT显示,有很多模拟放大器构成一个放大器链注1。有关高斯频响示波器的特点,在行业内已经广为人知。 但鲜为人知的是当代高性能数字示波器所普遍采用的平坦频率响应。数字示波器中和高斯频响有关的只是很少的几个模拟放大器,并可用DSP技术优化其对精度的影响。对于数字示波器来说,还有一件重要事情是,要尽量避免采样混叠误差注2,而模拟示波器是根本没有这种问题的。与高斯频响相比,平坦型频率响应能减少采样混叠误差,我们在这里首先回顾高斯响应和平坦响应的特性。然后讨论这两种响应类型所对应的上升时间测量精度。从而说明
[测试测量]
快速高精度频率测量方法
1 引言 电力系统频率稳定是近年来受到电力工程界广泛关注的课题。失去频率稳定性,会使系统频率崩溃而招致系统全停电;失去电压稳定性,会发生电压崩溃,从而引起大面积停电。电力系统的频率反映了发电机组发出的有功功率与负荷所需有功功率的平衡情况。目前,人们对电力系统动态频率的定义普遍沿用物理学和电工学对标准正弦交流电频率即每秒变化的周期数的定义,这种测量频率的方法就是 周期法 。不同的测频装置应用周期法测频的精度是不同的。准确的测量时间和频率在现代电力系统的运行中起着重要的作用。况且现代电力系统是一种复杂而广泛分散的结构,经常涉及多个地区。大量的发电机和用户负载是并联运作的。 个互联系统由许多控制区组成,电力从发电站传输到用户取决于许多
[测试测量]
Microchip新款IC将Win10设备的软件功耗测量精度提高到99%
Microchip Technology Inc.(美国微芯科技公司)日前宣布推出一款高精度功耗和能量监控芯片PAC1934,该芯片与Microchip软件驱动程序结合使用,完全兼容内置于Windows 10操作系统中的能量估算引擎(E3),在电池供电的所有Windows 10设备上,其测量精度高达99%。Microchip的PAC1934和Windows 10驱动程序与Microsoft的E3服务相结合,将各种软件应用程序的电池使用量测量精度提高了29%。 Microsoft首席项目经理Jessie Labayen说:“Microchip的PAC1934测量范围非常宽,可以高精度的测量显示屏、CPU、存储、网络、总体以及其
[电源管理]
优化自动化测试系统的测量精度
引言 在测试测量应用中,工程师们经常会听到的一个术语就是 测量精度 。对于 自动化测试 系统而言,测量精度不仅是评估其性能的一个至关重要的参数,也是科学家们不断努力希望提高的一个指标。虽然它的重要性得到一致的认可,然而,很多人对它的真正定义却不甚清楚,通常会将测量的精度(Accuracy)和 模数转换 器的分辨率(Resolution)混为一谈。那什么才是精度的真正定义呢?有哪些因素会影响到系统的测量精度呢?对于客户而言,又该如何通过仪器的 技术参数 文档来解读正确的精度参数呢? 大家知道,所有的测量都是对"真实"值的大致估计,也就是说测量的数值总是和"真实"值有一定的误差,那么这样一个误差的大小就是通常所说的
[测试测量]
高精度超声波测量距离系统的设计与实现
引言 在工程实践中,超声波由于指向性强、能量消耗缓慢且在介质中传播的距离较远,因而经常用于距离的测量。它主要应用于倒车雷达、测距仪、物位测量仪、移动机器人的研制、建筑施工工地以及一些工业现场等,例如:距离、液位、井深、管道长度、流速等场合。利用超声波检测往往比较迅速、方便,且计算简单、易于做到实时控制,在测量精度方面也能达到工业实用的要求,因此得到了广泛的应用。 超声波测距的基本原理 超声波发生器在某一时刻发出超声波信号,遇到被测物体后反射回来,被超声波接收器接收到。只要计算出超声波信号从发射到接收到回波信号的时间,知道在介质中的传播速度,就可以计算出距被测物体的距离: d=s/2=(vt)/2 (
[安防电子]
单片机与FPGA实现等精度频率测量和IDDS技术设计方案
O.引言 本系统利用单片机和FPGA有效的结合起来共同实现等精度频率测量和IDDS技术,发挥各自的优点,使设计变得更加容易和灵活,并具有频率测量范围宽、产生的波形频率分辨率高及精度大等特点。 系统方便灵活,测量精度和产生的波形分辨率高,能适应当代许多高精度测量和波形产生的要求,可以在各类测量系统和信号发生器中得到很好的利用,频率测量在电路实验、通讯设备、音频视频和科学研究中具有十分广泛的用途。等精度测量技术具有广阔的应用前景,由于其性能的优越性,在目前各个测量领域中都可以发挥着很好的作用,特别是在海洋勘探,太空探索以及各类实验中都得到了应用。 1.DDS信号发生器的实现 使用FPGA与单片机相结合的方式构成DDS信号发
[嵌入式]
利用MEMS提高医疗设备流量测量精度
流量传感器是众多医疗设备的关键器件,它被用来监视气体输出量以确保流量精确。目前可用的流量传感技术主要包括压差传感、正排量传感及叶轮传感。与那些不包含集成的信号放大与温度补偿电路的测量元件,微机电系统(MEMS)大流量传感器更容易集成(图1)。虽然MEMS大流量传感器具备许多优点,但由于其测量的流量比较大,所以价格一直偏高。 降低成本、减少空间、减轻重量的一个方法是在旁路通道设置低流量传感器来测量主通道上较大的流量。MEMS流量传感器旁路通道设置类似于差压传感器(间接测量气体流量,见图2).。与压差传感器相比,MEMS传感器在很低流量情况下依然可以提供更高的分辨率。图3描述了普通大流量传感器与压差传感器之
[医疗电子]
高精度超声波微压差测量仪设计
0 引 言 对于微小压差的测最,传统的方法是采用U型管压力计,该压力计结构简单,价格便宜,性能可靠,缺点是无法记录压力的瞬态变化,读数慢而读数误差大,人工估读时,最大精度也只能精确到0.5 mm液柱高度。为了提高灵敏度,减小读数误差,随之又出现了倾斜管压力计,如果倾斜管压力计的测量管倾斜角为30°,则测量精度可提高1倍。 随着压力传感器技术的发展,近年来又出现了电子微压差传感器,可将微小压力直接转换成电信号输出。此类传感器使用方便,反应速度快,精度也可以做得较高,目前比较好的微压传感器测量分辨率已达到10 Pa左右。缺点是稳定性不够好,温漂和时漂都比较大,且价格昂贵。 上述微压测量方法各有利弊,如果要继续提高测量精度,以上测
[测试测量]