拉普拉斯变换是工程数学中常用的一种积分变换,又名拉氏变换。拉氏变换是一个线性变换,可将一个有引数实数t(t≥ 0)的函数转换为一个引数为复数s的函数。拉氏变换英文名为Laplace Transform,为法国著名数学家拉普拉斯(Laplace,Pierre-Simon,marquisde)创立。主要运用于现代控制领域,和傅氏变换并称为控制理论中的两大变换。
拉氏变换里的S是复变函数里最为基础的一个符号,数学题做了这么多,考分也不低,但如果在多年的电路设计中用不上的话,岂不是对不起宝贵的青春了。
要用好拉氏变换,先了解S的物理含义和其用途。信号分析有时域分析、频域分析两种,时域是指时间变化时,信号的幅值和相位随时间变化的关系;频域则是指频率变化时,信号的幅值和相位随时间变化的关系;而S则是连接时域与频域分析的一座桥梁。
在电路中,用到的阻性用R表示;用到的感性特性和容性特性,分别用SL和1/SC表示,然后将其看成一个纯粹的电阻,只不过其阻值为SL(电感)和1/SC(电容);
其他特性(如开关特性)则均可通过画出等效电路的方式,将一个复杂的特性分解成一系列阻性、感性、容性相结合的方式。并将其中的感性和容性分别用SL和1/SC表示。
然后,就可以用初中学过的电阻串、并联阻抗计算的方式来进行分压、分流的计算,这当然很简单了。计算完后,最后一定会成一个如下四种之一的函数:
Vo=Vi(s)--------------------(1)
Io=Vi(s)--------------------(2)
Vo=Ii(s)--------------------(3)
Io=Ii(s) --------------------(4)
下一步,如果是做时域分析,则将S=d/dt代入上述1-4其中之一的式子中,随后做微分方程的求解,则可求出其增益对时间的变化式 G(t);
而如果做的是频域分析,则将S=jw代入上述1-4其中之一的式子中,随后做复变函数方程的求解,则可求出其增益对时间的变化式 G(w)、和相位对频率的变化式 θ(w);
至于求出来时域和频域的特性之后,您再想把数据用于什么用途,那就不是我能关心得了的了。
下面举一简单例子说明。
关键字:拉普拉斯变换 电路设计 时域 频域 拉氏变换
引用地址:电路设计中拉普拉斯变换的应用
拉氏变换里的S是复变函数里最为基础的一个符号,数学题做了这么多,考分也不低,但如果在多年的电路设计中用不上的话,岂不是对不起宝贵的青春了。
要用好拉氏变换,先了解S的物理含义和其用途。信号分析有时域分析、频域分析两种,时域是指时间变化时,信号的幅值和相位随时间变化的关系;频域则是指频率变化时,信号的幅值和相位随时间变化的关系;而S则是连接时域与频域分析的一座桥梁。
在电路中,用到的阻性用R表示;用到的感性特性和容性特性,分别用SL和1/SC表示,然后将其看成一个纯粹的电阻,只不过其阻值为SL(电感)和1/SC(电容);
其他特性(如开关特性)则均可通过画出等效电路的方式,将一个复杂的特性分解成一系列阻性、感性、容性相结合的方式。并将其中的感性和容性分别用SL和1/SC表示。
然后,就可以用初中学过的电阻串、并联阻抗计算的方式来进行分压、分流的计算,这当然很简单了。计算完后,最后一定会成一个如下四种之一的函数:
Vo=Vi(s)--------------------(1)
Io=Vi(s)--------------------(2)
Vo=Ii(s)--------------------(3)
Io=Ii(s) --------------------(4)
下一步,如果是做时域分析,则将S=d/dt代入上述1-4其中之一的式子中,随后做微分方程的求解,则可求出其增益对时间的变化式 G(t);
而如果做的是频域分析,则将S=jw代入上述1-4其中之一的式子中,随后做复变函数方程的求解,则可求出其增益对时间的变化式 G(w)、和相位对频率的变化式 θ(w);
至于求出来时域和频域的特性之后,您再想把数据用于什么用途,那就不是我能关心得了的了。
下面举一简单例子说明。
上一篇:基于EDA技术的数字频率计的设计
下一篇:夏光:OTDR的现场使用
推荐阅读最新更新时间:2024-03-30 22:55
一种基于CPLD的PWM控制电路设计
在直流伺服控制系统中,通过专用集成芯片或中小规模的数字集成电路构成的传统PWM控制电路往往存在电路设计复杂,体积大,抗干扰能力差以及设计困难、设计周期长等缺点因此PWM控制电路的模块化、集成化已成为发展趋势.它不仅可以使系统体积减小、重量减轻且功耗降低,同时可使系统的可靠性大大提高.随着电子技术的发展,特别是专用集成电路(ASIC)设计技术的日趋完善,数字化的电子自动化设计(EDA)工具给电子设计带来了巨大变革,尤其是硬件描述语言的出现,解决了传统电路原理图设计系统工程的诸多不便.针对以上情况,本文给出一种基于复杂可编程逻辑器件(CPLD)的PWM控制电路设计和它的仿真波形. 1 PWM控制电路基本原理 为了实现
[嵌入式]
功率驱动器件与MCU/DSC的接口电路设计技巧
由于MCU和DSC的成本大幅下降,目前多数马达控制设计中都使用MCU和数字信号控制器(DSC)来执行马达控制算法。本文介绍了一些方法和技巧,可将MCU或DSC的逻辑层输入/输出口(I/O)与功率电子驱动电路接口,并讲述了如何正确地进行相关硬件及软件开发的方法。 在进行MCU或DSC的逻辑层输入/输出口(I/O)与功率电子驱动电路的接口设计时,除了性能和价格需要权衡考虑外,还有许多方面要折衷处理。我们可根据以下问题来选择接口元件:1. 本电路需要驱动何种马达?2. 该马达采用何种算法进行控制?3. 控制器外设可简化哪些接口要求?4. 电气安全要求是什么?5. 此设计是否用于产品开发?
栅极驱动接口电路
半桥输出
[嵌入式]
微压力传感器接口电路设计
微压力传感器信号是控制器的前端,它在测试或控制系统中处于首位,对微压力传感器获取的信号能否进行准确地提取、处理是衡量一个系统可靠性的关键因素。后续接口电路主要指信号调节和转换电路,即能把传感元件输出的电信号转换为便于显示、记录、处理和控制的有用电信号的电路。由于用集成电路工艺制造出的压力传感器往往存在:零点输出和零点温漂,灵敏度温漂,输出信号非线性,输出信号幅值低或不标准化等问题。本文的研究工作,主要集中在以下几个方面:
(1)介绍微压力传感器接口电路总体方案设计、系统的组成和工作原理。
(2)系统的硬件设计,介绍主要硬件的选型及接口电路,包括A/D 转换电路、单片机接口电路、1602显示电路。
(3)
[嵌入式]
数字电压表的仿真电路设计
本文采用ADC0808对输入模拟信号进行转换,控制核心AT89C51单片机对转换的结果进行运算和处理,最后驱动输出装置显示数字电压信号,通过Proteus仿真软件实现接口电路设计,并进行实时仿真。 Proteus软件是一种电路分析和实物模拟仿真软件。它运行于Windows操作系统上,可以进行仿真、分析(SPICE)各种模拟器件和集成电路,是集单片机和SPICE分析于一身的仿真软件,功能强大,具有系统资源丰富、硬件投入少、形象直观等优点,近年来受到广大用户的青睐。 1 系统概述 1.1 设计任务 利用单片机AT89C51与ADC0808设计一个数字电压表,将模拟信号0~5 V之间的电压值转换成数字量信号,以
[模拟电子]
利用USB供电的单节NiMH电池开关模式充电器电路设计
虽然表面上Li+电池已经占据整个便携世界,但NiMH电池并没有被完全遗弃。令人吃惊的是,尽管单位重量的能量仍然有较大差距,但其单位体积的能量仅比Li+电池低大约15%。NiMH电池的最大缺点是自放电率较高,混合型NiMH电池在很大程度解决了这一问题,例如SANYOEneloop电池,静态下一年之后仍然能够保留85%的电量。NiMH电池的吸引力在于成本低、安全性高、用户更换方便等,至少标准电池具备这些优势。
图1所示便携设备由一节AA型NiMH电池供电,利用USB充电。充电器开关频率大约为150kHz,电池充电电流为1.1A (典型AA型NiMH电池在大约0.5°C条件下)。由于降压转换器将5V、500mA转换成电
[嵌入式]
JS20单结晶体管时间继电器电路设计
电路原理: 电路由延时环节、鉴幅器、输出电路、电源和指示灯五部分组成。电源的稳压部分由电阻R,和稳压管vs构成,为延时环节供电,输出电路中的晶闸管VTH和继电器。KA则由半波整流电路直接供电。当接通电源后,经二极管VD1整流、电容cl滤波、并经RJ和VS的稳压后,通过RP1、R4对电容G进行充电。电容G上电压按指数规律逐渐升高,当此电压大于单结晶体管VT的峰点电压时,单结晶体管导通,G经VT的eb1极和风放电,在风上输出脉冲电压,触发藩闸管VTH导通使继电器KA吸合,KA的触头同时将C3短路,使之迅速放电,单结晶体管的ebl之间电压迅速下降,当降到Vr.的谷点电压时,Vr关闭。同时LED指示灯点亮。当切断电源时,继电器KA释
[电源管理]
基于CMOS电路的IDDQ测试电路设计
引言 测试CMOS电路的方法有很多种,测试逻辑故障的一般方法是采用逻辑响应测试,即通常所说的功能测试。功能测试可诊断出逻辑错误,但不能检查出晶体管常开故障、晶体管常闭故障、晶体管栅氧化层短路,互连桥短路等物理缺陷引发的故障,这些缺陷并不会立即影响电路的逻辑功能,通常要在器件工作一段时间后才会影响其逻辑功能。 功能测试是基于逻辑电平的故障检测,通过测量原始输出的电压来确定逻辑电平,因此功能测试实际上是电压测试。电压测试对于检测固定型故障,特别是双极型工艺中的固定型故障是有效的,但对于检测CMOS工艺中的其他类型故障则显得有些不足,而这些故障类型在CMOS电路测试中却是常见的。对于较大规模电路,电压测试测试集的生成相当
[测试测量]
基于ISD1420的高响度语音电路设计
1系统构成
语音电路组成框图如图1所示。由PLC发布RS232电平信号,经电平转换后,为单片机AT89C51所接收。一方面控制语音芯片ISD1420放音,同时控制高亮度数码显示牌给出倒计时信号,为被训练人员提供提示。看门狗则保证该电路正常运行。
2语音信号控制
2.1语音电路构成
根据训练要求,语音电路在起跑前10秒发出“长提示音”一声,然后每隔一秒发“短提示音”一声,计时回零时发“发令枪声”(发声规律可调)。
语音部分电路设计见图2。“提示音”与“起跑枪声”由语音存储/再生芯片ISD1420分段存储,ISD1420输出的音频信号经电容耦合到两片集成功率放大器TDA2003构成的B
[应用]