1 引言
直接数字频率合成(DDS)是近几年一种新型的频率合成法,其具有频率切换速度快,频率分辨率高,以及便于集成等优点。在此,设计了基于DDS的频谱分析仪,该频谱分析仪依据外差原理,被测信号与本征频率混频,实现信号的频谱分析。
2 系统设计
图1给出系统设计框图,主要由本机振荡电路、混频电路、放大检波电路、频谱输出显示电路等组成。通过单片机和现场可编程门阵列(FPGA)共同控制AD985l,以产生正弦扫频输出信号,然后经滤波、程控放大得到稳定输出,与经放大处理的被测信号混频,再经放大、滤波、检波后,由MAXl97采集,并送至单片机处理,最后由示波器显示频谱图像和液晶显示相关信息。
振荡电路采用DDS器件AD9851,只需少量的外围器件即可构成完整的信号源,且具有转换速度快,分辨率高,换频速度快,频带宽,控制方便,信号稳定等特点。
混频电路采用模拟乘法器集成器件AD835,其输入的差分电压不大于2 Vpp,一3 dB带宽,250 MHz,外围电路简单,且调试方便。但缺点是输出偏置电压较高,其典型值为±25 mV,故后级需加隔直电路。
滤波电路采用专用滤波器MAX274,其优点是易于实现。外围电路简单,便于设定滤波器的中心频率、增益、截止频率及带宽,并能根据不同需求设计不同类型、不同阶数的滤波器。由于混频电路分上下混频,若采用上混频,则需高频窄带滤波器,这很难实现。因此这里采用下混频,只需设置一个中频窄带滤波器即可。
检波采用集成真有效值变换器件AD637,其测量信号有效值高达7 V,精度为0.5%,且外围电路简单,频带宽。
3 理论分析与计算
3.1 带通滤波器中心频率选择
从频谱分辨率的角度看.中频带通滤波器的通带宽度越小越好,但因其输入为扫频信号,为了保证输出具有一定强度,窄带宽就要求低扫频速率,而低扫频速率在大范围扫频时就需较长的扫频时间,从而影响仪器的数据输出率。按照要求分率为1 kHz。所以选定窄带滤波器的带宽为500 Hz,中心频率约100 kHz,但考虑到采用MAX274设计滤波器的难度,将中心频率调至70 kHz。
3.2 波形识别与中心频率判断
等幅波形频率比较单一,其频谱也较简单,只有一条频谱线。如果调制信号为单音余弦波f(t)=cos(ωt),则AM调幅波的表达式为:
式中:ma为调制指数;VCM为载波振幅。
单音调频信号的频谱相对复杂,可设调制信号频率为fΩ;调制频偏为△f,则信号带宽近似为2△f;谱线间间隔为调制信号频率fΩ,而各个谱线的高度则由贝塞尔函数得到。△f反映调频波所占带宽,△f越大,占用的带宽也越大,但每根谱线的间隔是不变的。
由图2可知,fΩ影响每根谱线之间的间隔,fΩ越小,频谱线的间隔也越小,频谱看起来越紧密;fΩ越大,频谱线间隔越大,频谱看起来则越稀松。但频谱占用带宽是不变的。
根据不同波形的频谱特征进行识别,在得到一个最大幅值和对应的频率后,再在剩下的点中找出第2个最大值A2和对应频率f2,然后判断(f1+f2)/2对应点的幅值,若较大,则为调频波,(f1+f2)/2即为它的中心频率;若很小,则是调幅波或等幅波,f1则为中心频率。由于调幅波带宽为20kHz,只需判断(f1-20)或(f1+20)的点值,若很小,为等幅波,否则是调幅波。
3.3 正弦电压有效值计算
AD637的内部结构包括有源整流器(即绝对值电路)、平方/除法器、滤波放大器、独立缓冲放大器和偏置电路。其中,缓冲放大器既可用作输入缓冲,也可构成有源滤波器滤波,提高测量准确度。根据AD637数据资料所给出的真有效值的经验计算公式:
Vrms="Vin2/Vrms" (2)
式中:Vin为输入电压;Vrms为输出电压有效值。
测量其峰值系数高达10的信号时,采用AD637,其附加误差仅为l%,外围元件少,频带宽。有效值为200 mV的信号,一3 dB带宽为600 kHz:有效值为l V的信号,一3 dB带宽为8 MHz。同时,AD637可用dB表示输入信号电平,计算多种波形的有效值、平均值、均方值和绝对值。
4 硬件电路设计
4.1 本机振荡电路
AD985l内部含有高速、高性能的10位D/A转换器,可用作全数字编程控制的频率合成器。在外接精密参考频率源时,其产生频谱纯净、频率和相位可编程控制,且稳定的模拟正弦波。图3给出其系统功能原理框图。采用AD985l作为DDS信号源,产生所需扫频信号。为避免高频干扰,采用PCB板实现。 [page]
由于AD985l产生的信号含有一定的高频谐波,因而可采用低通椭圆滤波器滤除高频分量。AD985l输出信号幅值不稳定,且不符合AD835的输入要求,因而采用AD603程控放大。AD603单片增益范围为一10~+30 dB,输入控制电压范围为0~1V,增益与控制电压的关系为Gain(dB)=40Vg+10。而AD603的输入控制电压由单片机通过D/A转换器提供。D/A转换器采用MAX5532。
4.2 混频电路
该系统采用AD835作为混频器,其输入信号是X1与Y1相乘后混频。X1,Y1的输人电压范围在一1~+l V较为合适,Vpp至少应大于50 mV。使用AD835混频时应注意输入混频器的信号中不能叠加直流分量。要使直流分量的频率为O,使得输出信号中有另一输入信号不能发挥混频器的作用。图4给出混频电路。
4.3 带通滤波电路
在确定带通滤波器的中心频率为70 kHz后,利用MAX274滤波器设计软件,以完成软件设计。图5为带通滤波器的设计。 [page]
4.4 A/D转换器
经AD637转换后的信号需再经MAXl97实现A/D转换,并送至控制系统处理。该系统设计采用8通道,12位MAXl97实现A/D转换。MAXl97的最小分辨精度可以达到5/4 096=1.22 mV,该器件一共有O~5V,0~10V,一5~+5 V,一lO~+10 V 4种量程.且外围电路简单。
5 测试结果
采用Tektronix数字示波器TDSl002和Agilent信号源33120A进行测试。表1为等幅波形测量值,表2为调幅信号测量值,表3为调频信号的测量值。由表1~表3可见,该系统具有识别调幅、调频和等幅波信号的功能。表4给出该系统实现中各性能的实测结果。
6 结语
该系统依据外差原理.采用单片机与FPGA相结合,实现频率范围为l~30 MHz信号的频谱分析。测试结果证明,系统稳定可靠,人机交互界面友好,操作简易方便。
关键字:DDS 频谱分析仪 滤波器
引用地址:基于DDS的频谱分析仪的设计与应用
直接数字频率合成(DDS)是近几年一种新型的频率合成法,其具有频率切换速度快,频率分辨率高,以及便于集成等优点。在此,设计了基于DDS的频谱分析仪,该频谱分析仪依据外差原理,被测信号与本征频率混频,实现信号的频谱分析。
2 系统设计
图1给出系统设计框图,主要由本机振荡电路、混频电路、放大检波电路、频谱输出显示电路等组成。通过单片机和现场可编程门阵列(FPGA)共同控制AD985l,以产生正弦扫频输出信号,然后经滤波、程控放大得到稳定输出,与经放大处理的被测信号混频,再经放大、滤波、检波后,由MAXl97采集,并送至单片机处理,最后由示波器显示频谱图像和液晶显示相关信息。
振荡电路采用DDS器件AD9851,只需少量的外围器件即可构成完整的信号源,且具有转换速度快,分辨率高,换频速度快,频带宽,控制方便,信号稳定等特点。
混频电路采用模拟乘法器集成器件AD835,其输入的差分电压不大于2 Vpp,一3 dB带宽,250 MHz,外围电路简单,且调试方便。但缺点是输出偏置电压较高,其典型值为±25 mV,故后级需加隔直电路。
滤波电路采用专用滤波器MAX274,其优点是易于实现。外围电路简单,便于设定滤波器的中心频率、增益、截止频率及带宽,并能根据不同需求设计不同类型、不同阶数的滤波器。由于混频电路分上下混频,若采用上混频,则需高频窄带滤波器,这很难实现。因此这里采用下混频,只需设置一个中频窄带滤波器即可。
检波采用集成真有效值变换器件AD637,其测量信号有效值高达7 V,精度为0.5%,且外围电路简单,频带宽。
3 理论分析与计算
3.1 带通滤波器中心频率选择
从频谱分辨率的角度看.中频带通滤波器的通带宽度越小越好,但因其输入为扫频信号,为了保证输出具有一定强度,窄带宽就要求低扫频速率,而低扫频速率在大范围扫频时就需较长的扫频时间,从而影响仪器的数据输出率。按照要求分率为1 kHz。所以选定窄带滤波器的带宽为500 Hz,中心频率约100 kHz,但考虑到采用MAX274设计滤波器的难度,将中心频率调至70 kHz。
3.2 波形识别与中心频率判断
等幅波形频率比较单一,其频谱也较简单,只有一条频谱线。如果调制信号为单音余弦波f(t)=cos(ωt),则AM调幅波的表达式为:
式中:ma为调制指数;VCM为载波振幅。
单音调频信号的频谱相对复杂,可设调制信号频率为fΩ;调制频偏为△f,则信号带宽近似为2△f;谱线间间隔为调制信号频率fΩ,而各个谱线的高度则由贝塞尔函数得到。△f反映调频波所占带宽,△f越大,占用的带宽也越大,但每根谱线的间隔是不变的。
由图2可知,fΩ影响每根谱线之间的间隔,fΩ越小,频谱线的间隔也越小,频谱看起来越紧密;fΩ越大,频谱线间隔越大,频谱看起来则越稀松。但频谱占用带宽是不变的。
根据不同波形的频谱特征进行识别,在得到一个最大幅值和对应的频率后,再在剩下的点中找出第2个最大值A2和对应频率f2,然后判断(f1+f2)/2对应点的幅值,若较大,则为调频波,(f1+f2)/2即为它的中心频率;若很小,则是调幅波或等幅波,f1则为中心频率。由于调幅波带宽为20kHz,只需判断(f1-20)或(f1+20)的点值,若很小,为等幅波,否则是调幅波。
3.3 正弦电压有效值计算
AD637的内部结构包括有源整流器(即绝对值电路)、平方/除法器、滤波放大器、独立缓冲放大器和偏置电路。其中,缓冲放大器既可用作输入缓冲,也可构成有源滤波器滤波,提高测量准确度。根据AD637数据资料所给出的真有效值的经验计算公式:
Vrms="Vin2/Vrms" (2)
式中:Vin为输入电压;Vrms为输出电压有效值。
测量其峰值系数高达10的信号时,采用AD637,其附加误差仅为l%,外围元件少,频带宽。有效值为200 mV的信号,一3 dB带宽为600 kHz:有效值为l V的信号,一3 dB带宽为8 MHz。同时,AD637可用dB表示输入信号电平,计算多种波形的有效值、平均值、均方值和绝对值。
4 硬件电路设计
4.1 本机振荡电路
AD985l内部含有高速、高性能的10位D/A转换器,可用作全数字编程控制的频率合成器。在外接精密参考频率源时,其产生频谱纯净、频率和相位可编程控制,且稳定的模拟正弦波。图3给出其系统功能原理框图。采用AD985l作为DDS信号源,产生所需扫频信号。为避免高频干扰,采用PCB板实现。 [page]
由于AD985l产生的信号含有一定的高频谐波,因而可采用低通椭圆滤波器滤除高频分量。AD985l输出信号幅值不稳定,且不符合AD835的输入要求,因而采用AD603程控放大。AD603单片增益范围为一10~+30 dB,输入控制电压范围为0~1V,增益与控制电压的关系为Gain(dB)=40Vg+10。而AD603的输入控制电压由单片机通过D/A转换器提供。D/A转换器采用MAX5532。
4.2 混频电路
该系统采用AD835作为混频器,其输入信号是X1与Y1相乘后混频。X1,Y1的输人电压范围在一1~+l V较为合适,Vpp至少应大于50 mV。使用AD835混频时应注意输入混频器的信号中不能叠加直流分量。要使直流分量的频率为O,使得输出信号中有另一输入信号不能发挥混频器的作用。图4给出混频电路。
4.3 带通滤波电路
在确定带通滤波器的中心频率为70 kHz后,利用MAX274滤波器设计软件,以完成软件设计。图5为带通滤波器的设计。 [page]
4.4 A/D转换器
经AD637转换后的信号需再经MAXl97实现A/D转换,并送至控制系统处理。该系统设计采用8通道,12位MAXl97实现A/D转换。MAXl97的最小分辨精度可以达到5/4 096=1.22 mV,该器件一共有O~5V,0~10V,一5~+5 V,一lO~+10 V 4种量程.且外围电路简单。
5 测试结果
采用Tektronix数字示波器TDSl002和Agilent信号源33120A进行测试。表1为等幅波形测量值,表2为调幅信号测量值,表3为调频信号的测量值。由表1~表3可见,该系统具有识别调幅、调频和等幅波信号的功能。表4给出该系统实现中各性能的实测结果。
6 结语
该系统依据外差原理.采用单片机与FPGA相结合,实现频率范围为l~30 MHz信号的频谱分析。测试结果证明,系统稳定可靠,人机交互界面友好,操作简易方便。
上一篇:无线电综合测试仪使用攻略
下一篇:是德发布适合当代半导体功率器件开发的关键参数表征方案
推荐阅读最新更新时间:2024-03-30 22:56
高冲击信号采集系统中数字滤波器的软件实现
0 引言 在进行高冲击信号采集试验时,虽然在采集板中设计了硬件滤波单元,但依然存在着采集信号毛刺较多的现象,这为后续信号的识别和分析带来了不便,因此需要采用软件滤波的方法对信号进行再次处理。 常用的数字滤波器有IIR滤波器和FIR滤波器。从性能上看,IIR滤波器所用的系数少,可以提高运算速度,但其相位响应,特别是带沿为非线形,稳定性不能一直得到保证。FIR数字滤波器可以得到严格的线性相位,但对同一幅频特性要求,实现阶数高,运算量大。因此一般的IIR和FIR数字滤波器难以做到严格的线性相位与小运算量兼顾,再加上采用浮点运算,影响了对信号的实时处理速度。 在对采集的冲击信号进行软件滤波处理时,为了加快计算速度,对滤波器的性
[单片机]
用在系统可编程模拟器件实现双二阶型滤波器
摘 要: 阐述了在系统可编程模拟器件的特点以及用它设计双二阶型、连续时间低通和带通滤波器的方法。
关键词: 在系统可编程模拟器件 双二阶型电路
数字在系统可编程(ISP)技术和复杂可编程器件(CPLD)在电子工业领域已得到了广泛的应用。Lattice公司最近推出的在系统可编程模拟电路(in system programmability Programmable Analog Circuits),简称ispPAC,允许设计者使用EDA开发软件、利用计算机设计和修改模拟电路,进行电路特性模拟,最后通过编程电缆将设计方案下载至芯片中。
在系统可编程电路提供三种可编程性
[应用]
PLL陷波滤波器可以用于阻拦不需要的频率
经常有要阻挡某些频率信号的情况,其中最常见的是50Hz或60Hz的电力线工频。图1中的PLL陷波滤波器可以用于阻拦不需要的频率。IC1 LM567C是一只音调解码器。C1、R1A和R1B等元件决定了IC1探测的频率F:F=1/ 。当把频率F加到IC1的Pin 3时,输出端Pin 8变为低,因为IC1中的输出晶体管饱和。 图1 一只音调解码器和一只开关可阻拦不需要的频率 LM567C解码器包含一个同相和正交探测器,由一只VCO(压控振荡器)驱动。VCO决定了解码器的中心频率。解码器的带宽为1070√V/(C2F),其中V是rms(均方根)的输入电压,C2是微法级的电容。带宽是频率的一个百分比。 音
[模拟电子]
是德E4445A频谱分析仪维修不开机故障案例
一、仪器型号 是德E4445A频谱分析仪 二、故障现象 客户报修故障是仪器通电无反应,无法正常开机。 三、测试与判断 不开机故障属于比较复杂的一类故障,首先需要让仪器可以正常开机才可以进一步排查仪器是否存在其他故障点。经检测发现,仪器主电源损坏,造成不开机,更换电源损坏组件仪器可以正常开机,但是开机后出现报错故障,并且测量超差大,自校准失败。接下来继续排查故障原因,经检测发现本振模块损坏,造成测量超差大,衰减器损坏,造成测量超差,自校准失败。 四、维修与处理 更换本振板损坏模块,更换衰减器,维修电路,调整检测仪器。 五、维修结果 仪器正常开机,报错故障消失仪器指标正常,可质检出库。 划重点: 1、测量大于30
[测试测量]
基于DDS的频谱分析仪的设计与应用
1 引言 直接数字频率合成(DDS)是近几年一种新型的频率合成法,其具有频率切换速度快,频率分辨率高,以及便于集成等优点。在此,设计了基于DDS的频谱分析仪,该频谱分析仪依据外差原理,被测信号与本征频率混频,实现信号的频谱分析。 2 系统设计 图1给出系统设计框图,主要由本机振荡电路、混频电路、放大检波电路、频谱输出显示电路等组成。通过单片机和现场可编程门阵列(FPGA)共同控制AD985l,以产生正弦扫频输出信号,然后经滤波、程控放大得到稳定输出,与经放大处理的被测信号混频,再经放大、滤波、检波后,由MAXl97采集,并送至单片机处理,最后由示波器显示频谱图像和液晶显示相关信息。 振荡电路采用
[模拟电子]
DDS的信号模拟器设计
DDS的信号模拟器设计 概述 在雷达的研制和生产过程中,对雷达的性能指标进行调试和检测是雷达研制和生产过程的一个重要环节。如果对雷达性能的测试都采用外场实物的话,即用真实的目标(如舰艇、坦克)给雷达提供测试信号,不仅要耗费大量的人力和物力而且使研制周期变长。因此,目标模拟器一数字模拟技术与雷达技术相结合发展起来的专门的系统,它为雷达的信号处理系统和显示终端技术指标的测试以及性能验证提供必要条件。 1971年,美国学者J.Tierney等人撰写的“A DigitalFrequency Synthesizer”一文首次提出了以全数字技术、从相位概念出发直接合成所需波形的一种新的频率合成原理。如今,DDS技术已成为频率合成技术发展的
[模拟电子]
有源滤波器与开关电容滤波器的性能比较
对模拟信号进行滤波,其基本原理就是利用电路的频率特性实现对信号中频率成分的选择。根据频率滤波时,把信号看成是由不同频率正弦波叠加而成的模拟信号,通过选择不同的频率成分来实现信号滤波。针对本应用所要求的带通滤波及放大,可以有多种方案,其中使用比较多的是由R、C及集成运放组成的 有源带通滤波器 和开关电容滤波器。 1 带通滤波器 带通滤波器的主要性能参数有: (1)中心频率增益K0:输入为中心频率信号时的电压放大倍数。 (2)中心频率f0:它只与滤波用的电阻和电容元件的参数有关,是带通滤波器通带内电压增益最大点的频率。 (3)截止频率fL和fH:输出幅值为×输入×中心频率增益时所对应的频率,带通滤波器有
[模拟电子]
一种基于DDS的电路板检测仪信号源设计
0 引言 某型导弹测试设备电路板检测仪主要完成该测试设备的电路板的故障检测。该检测系统要求激励信号产生电路体积小,配置灵活,且精度高、转换速度快。基于FPGA的DDS信号发生器较传统信号发生器能够更好地满足检测仪要求。 直接数字频率合成(Direct DIGITAL Synthesize,DDS)是从相位概念出发直接合成所需波形的一种频率合成技术。它是继直接频率合成和间接频率合成之后发展起来的第三代频率合成技术,突破了前两代频率合成法的原理,从“相位”的概念出发进行频率合成,这种方法不仅可以产生不同频率的正弦波、方波、三角波,而且可以控制波形的初始相位,还可以用此方法产生任意波形,目前得到了广泛的应用。
[测试测量]
小广播
热门活动
换一批
更多
最新测试测量文章
更多精选电路图
更多热门文章
更多每日新闻
- 新突破!超高速内存,为英特尔至强6性能核处理器加速
- 将vRAN站点整合至单服务器,助力运营商降低总体拥有成本
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
更多往期活动
11月17日历史上的今天
厂商技术中心