通过前端将PC声卡变成高速采样示波器的方法

发布者:和谐相处最新更新时间:2015-05-11 来源: elecfans关键字:PC声卡  高速采样  示波器 手机看文章 扫描二维码
随时随地手机看文章
  有多种软件包可以使个人计算机(PC)中的立体声声卡提供类似示波器的显示,但低采样速率、高分辨率模数转换器(ADC)和交流耦合前端最适合20 kHz及以下的可用带宽。现在,这种有限的带宽可以扩展——针对重复波形,可以在声卡输入前使用一个采样前端。利用高速采样保持器(SHA)对输入波形进行二次采样,然后通过低通滤波器重建波形,并使其平滑,可以有效延展时间轴,使PC能够用作高速采样示波器。本文描述一种能够实现这种改造的前端和探头。

  图1所示为一个插入式附件的原理图,它可以配合典型PC声卡采样使用。每个示波器通道使用一个高速采样保持放大器 AD783 SHA的采样信号由时钟分频器电路的数字输出提供,下文将通过一个例子说明。AD783输入由一个FET缓冲,因此可以使用简单的交流/直流输入耦合。在所示的两个通道中,当直流耦合跳线开路且输入为交流耦合时,1 MΩ电阻(R1和R3)提供直流偏置。采样输出由图中所示的双极点有源RC网络低通滤波。该滤波器不必是一个有源电路,但所示的滤波器能够提供有益的缓冲低阻抗来驱动PC声卡输入。

 

  

  图1. 双通道模拟采样电路

 

  AD783 SHA提供高达数MHz的可用大信号带宽。输入端的有效压摆率约为100 V/µs以上。采用±5 V电源时,输入/输出摆幅至少为±3 V。对于500 mV p-p以下的摆幅,小信号3 dB带宽接近50 MHz。

  利用图1所示的前端电路以及采用Visual Analyser1 软件的PC声卡,可以得到一个以1 MHz频率重复的2 MHz单周期正弦波,如图2的屏幕截图所示。采样时钟以80.321 kHz的采样速率提供250 ns宽的采样脉冲。这里的有效水平时基为333 ns/分频比。例子中使用的PC声卡采用SoundMax® 编解码器,其采样速率为96 kSPS。本例中,有效采样速率约为40 MSPS。

 

  

  图2. 以1 MHz频率重复的2 MHz单周期正弦脉冲

 

  图3中的屏幕截图显示的是一个以1 MHz频率重复的高斯正弦脉冲。采样时钟速率同样是80.321 kHz,采样脉冲宽度为250 ns。

 

  

  图3. 以1 MHz频率重复的4 MHz高斯正弦脉冲

 

  采样时钟发生器示例

 

  AD783要求一个宽度为150 ns至250 ns的窄正采样脉冲。为使显示的波形保持稳定,无来回跳动,采样脉冲必须非常稳定,抖动很低。这一要求往往将可能的时钟选择限定于晶体振荡器。另一个要求是采样速率可以在略低于100 kHz到大约500 kHz的范围内进行调整或调谐。为使下采样信号落在声卡的20 Hz到20 kHz音频带宽内,采样频率间的调谐步进必须较为精细。一个诸如图4所示的N分频电路和一个频率介于10 MHz到20 MHz的晶体振荡器(IC4),可以提供从80 kHz到350 kHz的多达200种或更多的不同采样速率,步进大小介于300 Hz到5 kHz之间。本例使用两个4位二进制升降计数器74HC191,N可以是4到256之间的任意整数。也可以使用74HC190等十进制计数器,其引脚排列与74HC191相同,可以提供4到100的N值。分频比利用两个十六进制开关S1和S2设置。开关S3设置计数器是递增还是递减计数。电阻R1 (250 Ω)和电容C1 (68 pF)给引脚计数输出增加一个很短的延迟,经过该延迟后,引脚计数输出加载起始计数值。74HC00的四个NAND门用于实现单稳态模式,当R12为2.7 kΩ且C2为68 pF时,单稳态模式提供200 ns的采样脉冲。[page]

 

  

  图4. 采样时钟分频器电路

 

  IC4是固定频率金属帽壳晶体振荡器。另一种方法是使用CMOS反相器(74HC04)和分立晶体X1来构成一个振荡器,如图5所示。这种方法使用的元件虽然多于一体式金属帽壳振荡器,但它支持通过调整电容C1来调节晶体频率,从而实现精密的频率调谐。

 

  

  图5. 采用机械调谐方式的分立晶体振荡器

 

  为了消除机械可变元件,D1可以使用变容二极管,其电容取决于电压,如图6所示。

 

  

  图6. 采用电压调谐方式的分立晶体振荡器

 

  有源重构滤波器示例

 

  图7和图8所示为有源滤波器设计,它们应能很好地代替简单的无源RC滤波器。图7显示的是一个二阶Sallen-Key滤波器,转折频率约为39 kHz,使用标准电阻和电容值。双通道运算放大器AD8042 和AD822 具有低电源电压和宽摆幅特性,是很好的选择。该滤波器在通带内的增益为+1。

 

  

  图7. Sallen-Key 39 kHz低通滤波器

 

  图8显示的是一个二阶多路反馈(MFB)滤波器,转折频率约为33 kHz,使用标准电阻和电容值。该滤波器的通带增益为–1,因此,使用该滤波器时,为使显示的波形右侧朝上,应选择示波器软件上的“反相”按钮。

 

  

  图8. MFB 33 kHz低通滤波器

 

  电路供电

 

  重构滤波器使用的AD783和放大器需要双电源供电。可以使用6节AA电池,3节提供+4.5 V电源,另外3节提供–4.5 V电源。或者,也可以使用单个9 V电池,利用一个电阻分压器来提供作为地的中间电源电压,这将需要由一个运算放大器进行缓冲才能提供电路所需的地电流。第三种方法是使用一个可调线性调节器,产生相对于电池负极的约4.5 V电压,用作接地基准。

  第四种方法是使用备用PC或笔记本电脑USB端口提供的+5 V电源。–5 V电源可以由DC/DC电压逆变器产生,例如ADI公司的ADM8829—(表贴封装)。应特别注意避免受到DC/DC电压逆变器产生的开关噪声干扰。

 

  输入衰减器

 

  AD783的小信号增益远高于全摆幅带宽。通过在采样器之前插入一个10:1阻性衰减器以限制最大信号带宽,可以实现远超过20 MHz的可用带宽。多家公司提供成本相对较低的示波器探头,如Syscomp Electronic Design, Ltd2等(图9)。下面是笔者撰写本文时获得的信息:

  Syscomp Electronic Design生产的40 MHz带宽、1×/10×可切换型示波器探头(P6040),每对价格$29.99。[page]

 

  

  图9. P6040 1×/10×示波器探头

 

  HobbyLab3生产的20 MHz 10:1版本示波器探头(GT-P6020),每对价格$19.50。

  Gabotronics.com4生产的100 MHz P2100和60 MHz P2060通用探头,每种价格约$10.00。

 

  使用探头

 

  图10、图11和图12所示的声卡5屏幕截图利用P2100 100 MHz 10×探头获取,它可以补偿10 pF至35 pF范围内的输入电容。对于建议的电路,如果PCB板线路长度尽可能保持最短,那么这个调整范围似乎是充足的。采用10×探头时,输入看起来像10 MΩ和18 pF,可以支持最高±30 V的输入电压。

  为了展示AD783采样保持输入级的性能,首先利用1 kHz平顶方波调整探头补偿。屏幕截图显示了器件对频率为1 MHz和50 MHz的不同信号的响应。图10中的两个屏幕截图显示单通道情况,(a)为1 MHz、5 V p-p方波,(b)为50 MHz、5 V p-p方波。每种情况下,采样时钟均针对大约500 Hz的下采样信号频率进行调整,以便消除任何声卡响应差异。因此,左边屏幕截图的有效时间刻度为500 ns/分频比,右图为10 ns/分频比。声卡输入增益设置如下:对于1 MHz输入,示波器软件报告1.072 V p-p的幅度;对于50 MHz输入,则报告762.2 mV p-p的幅度。0.7622/1.072接近–3 dB。这一测量结果显示,100 MHz 10×探头和AD783的组合具有50 MHz的3 dB带宽。

 

  

  (a)                                                                 (b)

  图10. 单通道10×探头:1 MHz (a)和50 MHz (b) 5 V p-p输入方波

 

  图11中,同样的1 MHz (a)和50 MHz信号(b)被施加于两个通道。从两个通道的两幅重叠屏幕截图可以看出,两个通道之间具有良好的增益、失调和延迟匹配。

 

  

  (a)                                                                      (b)

  图11. 双踪双通道匹配10×探头:1 MHz (a)和50 MHz (b) 5 V p-p输入方波

 

  最后一幅屏幕截图(图12)显示375 kHz、5 V p-p方波(红色线)和1.5 MHz、42 ns宽5 V p-p脉冲(绿色线)的情况。水平刻度为333 ns/分频比。AD783采样器保持完整的5 V摆幅,即便输入这些较窄的42 ns脉冲也是如此。

 

  

  图12. 双踪双通道、10×探头:375 kHz、5 V p-p方波和1.5 MHz、42 ns 5 V p-p脉冲

 

  参考文献

  1Visual Analyser 是一个完整的专业实时软件包,可以将PC变成一整套测量仪器。它使用PC的声卡,无需新硬件http://www.sillanumsoft.org/。

  2Syscomp Electronic Design, Ltd. http://www.syscompdesign.com/Accessories.html.

  3HobbyLab http://securedwithssl.com/HobbyLab-us/product/63258ffa-dcc8-4508-8152-d2461d943169.aspx.

  4Gabotronics http://www.gabotronics.com/accesories-and-cables/view-all-products.htm.

  5基于PC的声卡示波器从声卡接收数据,采样速率为44.1 kHz,分辨率为16位。此外还提供WaveIO,它是用于LabView软件的声卡接口。 http://www.zeitnitz.de/Christian/scope_en.

关键字:PC声卡  高速采样  示波器 引用地址:通过前端将PC声卡变成高速采样示波器的方法

上一篇:测试仪器选择:如何选择合适的示波器带宽
下一篇:基于示波器分析CDMA射频无线信号

推荐阅读最新更新时间:2024-03-30 22:57

带宽与模拟前端决定示波器的性能指标和核心设计
虽然示波器不是对硬件要求最高的仪器,鉴于示波器是众多工程师最熟悉也是测试仪器细分市场最大的单台仪器,所以我们采访了全球能将示波器带宽做到GHz级别厂商中的几家代表,从示波器的硬件分析入手,带大家一起了解示波器的核心设计单元。 带宽,采样率和存储深度,是决定一台示波器市场价值最直观的三大特性,其中带宽是最明显能体现示波器的性能的指标,采样率的数值和带宽有着一定的联系,而这两个数值则直接关系到示波器的最终售价,其数值也基本都是由模拟单元的硬件性能决定的。 示波器的架构经历了几十年的沉淀,特别是最近二十年数字示波器的高速发展,已经基本趋于稳定,普源精电(RIGOL)副总裁邢飞介绍,当代数字示波器的基本组成主要包括:模拟前端(负责
[测试测量]
示波器基础系列之六 —— 关于示波器的顺序模式
通常情况下,示波器都是工作在实时模式,但对某些应用,我们需要利用示波器的一些特别的工作模式。顺序模式是一种特别的工作模式,并不是在实时模式下的一种功能。在这种特别模式下实时模式下的某些功能都失效了。 在介绍一个新功能前,我总先要回忆一下当年我刚到力科时我的 老师们 是怎么解释这个功能的。 力科的顺序模式就如Tek的DPX模式,这就好比百事可乐和可口可乐,T公司先注册了DPX,所有我们不能再叫DPX了,但其实两种功能的目的差不多。很多人都知道DPX,却很少有人知道顺序模式,但其实顺序模式比DPX模式强大得多! 这段话我至今未忘。 下面我来解读类似但又区别于可口可乐的 百事可乐 力科的顺序模式。 在DPX模式下,信号经过放大器、AD
[测试测量]
<font color='red'>示波器</font>基础系列之六 —— 关于<font color='red'>示波器</font>的顺序模式
漫谈示波器的选择—关键指标解析
目前快速、复杂的数字设计需要比以往任何时候都更多的物理层分析。选择适当的示波器,能有效帮助工程师直接在仪器上进行测量分析,进而将设计验证周期缩短数周。全球80%的工程师使用泰克示波器来加快其设计的调试与测试工作。本文作者——泰克公司大中华区市场开发经理张天生在接受国内某知名媒体专访时就示波器的一些关键指标进行了阐述,并在结尾作了趋势展望。 1. 带宽对示波器有多重要?工程师们还提到种类,也就是说,带宽并不是唯一的衡量指标。高带宽也意味着更多的噪声。怎样处理这个问题? 事实上,带宽相同的示波器会表现出不同的上升时间,这是因为带宽是在-3 dB处确定的,而没有提供与频响或相位响应的线性度有关的任何信息。不同的放大器特点(滤波器
[测试测量]
关于示波器测量电流、纹波、市电的方法和应用介绍
示波器、信号源、频谱仪、万用变、电源...这些电子工程师们常用的工具,你真的了解吗? 你的测量方法正确吗? 你知道更加专业或简易的操作方法吗? 你知道如何对自己的仪器进行保养么? “测量小贴士”为您系统的介绍通用测量仪器,带你深入全面的了解每天都会用到的工具,测量信号不再糊涂,解答平常使用的各种困惑。 测量小贴士,您最贴心的小助手。 本文是由RIGOL客户服务部经过半年的努力,系统的梳理了近些年用户们询问较多的技术问题,“一线热贴,最强干货!”让您各种测量,一手掌握。 1RIGOL数字示波器能否可以测量电流波形? 可以通过下面两种方法测量电流波形: 1)使用电流探头直接测试; 2)在测试点引出电阻,测试电阻两端的电压,
[测试测量]
关于<font color='red'>示波器</font>测量电流、纹波、市电的方法和应用介绍
示波器探头与被测电路连接的注意事项
  示波器是一种常用的检测仪器,可以把人们肉眼无法看到的电信号转换为可见图像,具有可靠性高、稳定性好、使用方便、维护简单等多种的优点。将待测信号正确接入示波器是测试的第一步,因此示波器探头与被测电路的连接是非常重要,所以需要注意的问题是很多的。今天小编就来为大家介绍一下示波器探头与被测电路连接的注意事项吧,希望可以帮助到大家。   1. 探头与被测电路连接时,探头的接地端务必与被测电路的地线相联。否则在悬浮状态下,示波器与其他设备或大地间的电位差可能导致触电或损坏示波器、探头或其他设备。   2. 测量建立时间短的脉冲信号和高频信号时,请尽量将探头的接地导线与被测点的位置邻近。接地导线过长,可能会引起振铃或过冲等波形失真。   
[测试测量]
示波器做环路分析需要几步?
尽管环路分析是检测控制系统稳定性的重要手段,但是测试过程中有诸多细节需要注意,如何快速理解环路分析的意义?环路分析需要怎样设定参数?环路分析的结果该如何读取呢? 一、如何三句话讲清楚环路分析在做什么? 1、稳定可靠的系统必须是闭环系统(带反馈)。控制器根据系统的实际输出与理想输出的偏差来设计算法,使输出值逼近设定值; 2、系统稳定性需要依靠环路中的增益相位裕量来量化,这个指标可以通过扫频来测量; 3、环路分析就是在控制系统中注入频率变化的干扰信号,从而得出系统的频率响应曲线。 总得来说,通过环路分析就能知道当负载端变化时控制系统的表现是否稳定,就这么简单! 环路分析结果图片 二、环路分析的结果是什么? 示波器根据输出信
[测试测量]
用<font color='red'>示波器</font>做环路分析需要几步?
示波器协议解码功能和专用总线协议分析仪的区别
随着示波器分析功能的越来越强大,示波器厂商开始把对一些总线的解码功能内置到示波器里,这样做数字总线调试的用户不但可以用示波器进行波形分析,也可以通过解码软件把相应总线上承载的内容解码出来。 示波器里的总线解码功能相对于专用协议分析仪来说,主要有以下优点: 1/ 可以直接把示波器采集到的波形和协议内容相关起来。比如下图中我们可以把直接看到包里面的数据以及对应的波形,这样数据出了问题我们可以判断出是确实数据发错了还是某个bit信号质量的问题。协议分析仪由于只能看到数据包而看不到原始波形,所以数据发生错误时没法判断是确实发错了还是信号质量造成的。 2/ 示波器可以使用探头点在信号上直接进行总线的协议分析。 示波器由于
[测试测量]
<font color='red'>示波器</font>协议解码功能和专用总线协议分析仪的区别
【泰克应用分享】实现示波器同步以获得更高通道数时需要考虑的三件事
构建测试系统时,可能需要测量多个信号,此时仅依靠一个示波器的可用通道可能无法完全捕获所有信号。要增加测试系统中的示波器通道数量,常见的方法是将多个示波器组合在一起。多通道测量适用于各种场景,例如捕获复杂的粒子物理实验数据、测量大量电源轨以及分析三相电源转换器。 这些测量涵盖的任务包括检测电源对串行总线的串扰、分析射频干扰以及验证传入的输入/输出信号的完整性。在多通道应用或测量场景中,保持通道之间的精确同步对于准确分析整个被测系统内的时序关系至关重要。 图 1: TekScope PC 分析软件 当需要同步捕获许多信号时,实现示波器同步有多种办法。我们来说说使用 5 和 6 系列 B MSO 示波器和TekScope
[测试测量]
【泰克应用分享】实现<font color='red'>示波器</font>同步以获得更高通道数时需要考虑的三件事
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved