测量电源纹波本身有一定技巧性。图1给出了一个不当使用示波器测量电源纹波的实例。在这个例子中出现了几个错误,首先是使用了接地线很长的示波器探针;其二是让由探针和接地线形成的回路靠近功率变压器和开关元件;最后是允许在示波器探针和输出电容之间形成额外的电感。其结果带来的问题是在测得的纹波波形中携带了拾取的高频成分。
在电源中有许多很容易耦合到探针中的高速的、大电压和电流信号波形,其中包括来自功率变压器的磁场耦合、来自开关节点的电场耦合、以及由变压器交绕(interwinding)电容产生的共模电流。
图1:不当的纹波测量得到糟糕的结果。
采用正确的测量技术可切实改善纹波测量的结果。首先,通常会规定纹波的带宽上限,以避免拾取超出纹波带宽上限的高频噪声,应该给用于测量的示波器设定合适的带宽上限。其次,可以通过摘掉探针的“帽子”来去掉接地长引线形成的天线。如图2所示,我们把一段短线绕在探针接地引线周围,并使之与电源地相连接。这样做附带的好处是缩短暴露在电源附近高强度电磁辐射中的探针长度,从而进一步减少高频拾取。
最后,在隔离电源中,真正的共模电流是由在探针接地引线中流动的电流产生的,这就使得在电源地和示波器地之间产生电压降,表现为纹波。要抑制这个纹波,需要在电源设计中仔细考虑共模滤波问题。
此外,把把示波器引线绕在铁芯上可减小这个电流,因为这样会形成一个不影响差分电压测量、但可降低由共模电流产生的测量误差的共模电感。图2显示了采用改进测量技术对同一电路得到的纹波电压测量结果。可以看到,高频尖刺已几乎消除。
图2:四种简单改进极大地改善了测量结果。
事实上,当电源集成到系统中之后,电源纹波性能甚至会更好。在电源和系统其它部分之间几乎总会存在一定量的电感。电感可能是由导线或在印刷线路板上的蚀刻线形成的,而在芯片附近总会有作为电源负载的附加旁路电容,这两者形成低通滤波效应并进一步降低电源纹波和/或高频噪声。
举一个极端的例子,由电感量为15nH的长一英寸的短线和电容量10μF的旁路电容构成的滤波器,其截止频率为400kHz。该实例意味着能大幅减少高频噪声。该滤波器的截止频率比电源纹波频率低很多倍,可以切实降低纹波。聪明的工程师应该在测试过程中设法利用它。
关键字:电源纹波 示波器
引用地址:
准确测量电源纹波的方法分析
推荐阅读最新更新时间:2024-03-30 23:04
示波器配件选择的方法
一台好的示波器,必须配好的探头,探头的主要作用是与产品信号的传输,选一台好的示波器,固然重要,但是好的探头也是必不可少,探头的好坏,直接影响测试的效果,根据测试的信号量程,选择适中的探头。示波器探头对测量结果的准确性以及正确性至关重要,它是连接被测电路与示波器输入端的电子部件。最简单的探头是连接被测电路与电子示波器输入端的一根导线,复杂的探头由阻容元件和有源器件组成。简单的探头没有采取屏蔽措施很容易受到外界电磁场的干扰,而且本身等效电容较大,造成被测电路的负载增加,使被测信号失真。 示波器探头对测量的影响 负载效应所谓负载效应就是在被测电路上接入示波器时,有时示波器的输入电阻会对被测电路产生影响,致使被测电路的信号发生变化
[测试测量]
RIGOL 示波器 “comparo”彰显出Smarter System之先进
众多的产品正向更智能方向发展,我们必须充分利用All Programmable世界所提供的各种资源,以便在竞争中占得先机。这个道理是我在一次不经意的经历中所悟出的。在Dave Jones EEVblog的一个最新视频中(视频网址: http://v.youku.com/v_show/id_XNTM5MzcwNzMy.html ),将普源精电公司(RIGOL)四五年前推出的RIGOL DS1052E数字示波器与其去年推出的新一代“经济型”数字示波器DS2072进行了对比。(《Motor Trend》汽车杂志的读者应该知道,该杂志把对于两辆不同型号汽车的一一对比评测称为“comparo”)
Steve
[测试测量]
一款自制简易示波器设计
这款简易示波器的性能如下: 1.电压挡位:200mV、500mV、1V、2V、5V、12.5V、25V、50V。 2.频率挡位:12MHz、6MHz、4MHz、3MHz、2MHz、1MHz、500kHz、250kHz、100 kHz、50kHz、25kHz、10kHz。 3.能较好地测量300 kHz的波形。 这次DIY的示波器性能虽然较弱,仅仅能用来测试音频等300kHz以下频率的周期波形。不过它还有一个实用的功能,可以用来测试+/-50V的电压(量程是自动切换的)。 主要零件 编号 零件名称 数量 1 ATMEGA8单片机 1 9 24MHz有源晶振 1 8 128x64液晶屏
[模拟电子]
了解示波器波形粗细属性
示波器波形展示了真实的电子信号。在评估示波器性能时,可以考察它显示与目标信号形状相同的波形的能力。假设示波器具备足够的基本技术指标——例如带宽、采样率和等频率响应,示波器应当显示粗波形还是细波形更好一些?这个问题的答案与大部分工程学问题一样:“视具体情况而定”。 现在我们研究一下示波器和信号的属性,这些属性有助于用户确定是粗波形还是细波形。两个关键属性可使用户了解他们的示波器显示目标信号的能力,分别是更新速率和噪声。 更新速率对波形粗细的影响 更新速率表示示波器在 1 秒钟内采集、处理与显示的波形数目。更新速率越高,示波器就能更迅速地显示被测信号。更新速率越低,示波器就会花费更长时间显示与特定波形相关的细节。目前,示波器的
[测试测量]
深入浅出谈高速串行信号测试(二)
在这篇文章中我们深入讨论一下高速信号中最主要的方面——抖动。在上一篇中我们知道现在数字电路发展的趋势是并行向串行发展,而串行速率也在不断的提高,下图是流行的串行总线发展趋势图: 图:高速串行总线发展趋势 抖动的定义:“信号的某特定时刻从其理想时间位置上的短期偏离为抖动”。 参考: Bell Communications Research, Inc (Bellcore), “Synchrouous Optical Network (SONET) Transport Systems: Common Generic Criteria, TR-253-CORE”, Issue 2, Rev No. 1, December 1997
[测试测量]
示波器如何测量瞬时值变化时间
孤岛现象是指当电网供电因故障事故或停电维修而跳脱时,各个用户端的分布式并网发电系统(如:光伏发电、风力发电、燃料电池发电等)未能即时检测出停电状态而将自身切离市电网络,而形成由分布电站并网发电系统和周围的负载组成的一个自给供电的孤岛。 孤岛发生时由于系统供电状态未知,可能会造成各种不利影响:比如可能危及电网线路维护人员和用户的生命安全;亦或干扰电网的正常合闸;或者电网不能控制孤岛中的电压和频率,从而损坏配电设备和用户设备。 因此,如光伏并网逆变器的电源控制断路器跳闸,就需要示波器来测量装置防孤岛运行断电时间,以检验其是否符合标准。 对示波器而言,这个过程其实就是测量瞬时值的变化。那么今天我们就来讲一讲,如何用示波器来测量波
[测试测量]
基于STC12C5408AD的记忆示波器 (1)
示波器是电子测量的基本仪器。由于其具有图形显示实时、直观和形象等特性,在一般的物理实验室中它也是常用仪器之一。众所周知,示波器是依据输入电压调制的电子束扫描、荧屏余辉以及人眼的暂留效应等原理制成的;它要求输入周期信号;对于非周期性的信号,普通示波器是无能为力的,必须使用具有记忆功能的专用示波器,但这种示波器价格高昂,一般的物理实验室无法大量配置。 信息时代,个人计算机大量普及。普通物理实验室以及一般的中学都已配备了大量的计算机(以下称PC)。但这些PC大都用于文字信息处理和计算工作,其内在的功能还远远没有发挥,实际上造成了巨大的浪费。 我们知道,PC具有很强的图像显示功能。如果能够开发、利用这一功能,配上外部接
[测试测量]
【泰克应用分享】如何实现MSO示波器更多通道的测试
本文以泰克4,5和6系列MSO为例,说明了多示波器同步的程序和原理 。4,5和6系列MSO支持任意型号示波器之间的同步,从而实现更多通道的同步采集系统。 通道数量为何要求超过4个? 4系列B MSO示波器是同系列产品中首个推出6通道的型号,可满足用户多种测试应用场景。可应用于复杂粒子物理实验的捕获、多个电源轨的测量、三相电源转换器的分析等场景。测量可以包括串行总线中出现的电源串扰、分析射频干扰、同步观测输入/输出信号的传输等等。 人们也会通过同步多台示波器能够测量更多通道。在多通道应用或测量场景中,为了精确分析整个被测系统的时序关系,保持通道间的精确同步非常重要。 多示波器测量的考虑因素 软件 对于多示波器测量
[测试测量]