带宽被称为示波器的第一指标,也是示波器最值钱的指标。示波器市场的划分常以带宽作为首要依据,工程师在选择示波器的时候,首先要确定的也是带宽。在销售过程中,关于带宽的故事也特别多。
通常谈到的带宽没有特别说明是指示波器模拟前端放大器的带宽,也就是常说的-3dB截止频率点。此外,还有数字带宽,触发带宽的概念。
我们常说数字示波器有五大功能,即捕获(Capture),观察(View),测量(Measurement),分析(Analyse)和归档(Document)。这五大功能组成的原理框图如图1所示。
图1,数字示波器的原理框图
捕获部分主要是由三颗芯片和一个电路组成,即放大器芯片,A/D芯片,内存芯片和触发器电路,原理框图如下图2所示。被测信号首先经过探头和放大器及归一化后转换成ADC可以接收的电压范围,采样和保持电路按固定采样率将信号分割成一个个独立的采样电平,ADC将这些电平转化成数字的采样点,这些数字采样点保存在采集内存里送显示和测量分析处理。
图2,示波器捕获电路原理框图
示波器放大器的典型电路如图3所示。这个电路在模拟电路教科书中处处可见。这种放大器可以等效为RC低通滤波器如图4所示。由此等效电路推导出输出电压和输入电压的关系,得出理想的幅频特性的波特图如图5所示。
图3,放大器的典型电路
图4,放大器的等效电路模型
图5,放大器的理想波特图
至此,我们知道带宽f2即输出电压降低到输入电压70.7%时的频率点。根据放大器的等效模型,我们可进一步推导示波器的上升时间和带宽的关系式,即我们常提到的0.35的关系:上升时间=0.35/带宽,推导过程如下图6所示。需要说明的是,0.35是基于高斯响应的理论值,实际测量系统中这个数值往往介于0.35-0.45之间。在示波器的datasheet上都会标明“上升时间”指标。示波器测量出来的上升时间与真实的上升时间之间存在下面的关系式。在对快沿信号测试中,需要通过该关系式来修正实际被测信号的上升时间。
Measured risetime(tr)2 = (tr signal)2+(tr scope)2+(tr probe)2
图6,示波器上升时间和带宽的关系
示波器前端放大器幅频特性的波特图是新示波器发布的“出生证”。 示波器每年需要进行校准,波特图是第一需要校准的数据。示波器波特图的测量方法如图7所示。 信号源从10MHz频率开始逐渐递增发送一定幅值的正弦波送到功分器,功分器将输入的信号能量等分为二后通过等长的线缆分别送到示波器和功率计。功分器和线缆是无源器件,可以严格定标,信号源本身的幅频特性不可以作为定标仪器,需要通过功率计实测的能量来作为示波器的输入幅值的定标值。 有时候客户会对示波器的波特图很感兴趣,直接用信号源连接到示波器来评估示波器的波特图,在带宽超过1GHz时这种方法是很不严谨的。需要用功率计来作为定标工具! 2006年二月份的EDN杂志中有文章介绍。http://www.edn.com/article/CA6305348.html#Calibrating
此外,在计量波特图时需要对示波器每个文件位都进行计量,最终产生的波特图是所有档位的结果迭加在一起的。波特图的计量是需要半天时间完成的,并不是想象中那么轻松的工作。如图8所示是力科SDA9000的波特图,我特地将Excel中大量数据显示给大家以使大家对校准的严谨性有深刻认识。其垂直轴是-1dB/div, 迭加了10mv/div、20mv/div、50mv/div、200mv/div、500mv/div、1v/div等档位的测试结果。很多时候,我们的竞争对手会把他们的波特图画成-10dB/div、只有一个档位的测试结果拿给客户,并和力科提供的这种-1dB/div、各种文件位迭在一起显示的结果放在一起进行对比,然后他们告诉客户,他们的波特图更平坦,更干净,甚至将力科波特图上面密密麻麻的点说成是“噪音”大。这是有点贻笑天下的。竞争对手敢于一再采用这种做法,这是假设中国的工程师都没有辨别力,独立思考能力,是对工程师严重不尊重的公然欺骗行为。希望能引起大家注意。[page]
图7,示波器波特图的计量方法
关于带宽的更深入讨论,我们需要谈到示波器前端放大器幅频特性的平坦度和滚降特性。力科的一
篇技术白皮书中对此有非常详细的解释。 http://www.lecroy.com/tm/Library/WhitePapers/PDF/Eye_Patterns_in_Scopes-designcon_2005.pdf (这份白皮书的第一作者Peter是DSP提升带宽,Eye Dcotor和DBI等原创技术的发明者)
现在业界有三种幅频特性曲线,分别代表了三个品牌:Gaussian( 泰克), 4th oder Bessel (力科)和Maximally Flat(安捷伦)。
Gaussian响应在-3dB之后仍衰减很慢。其优点是允许被测信号的更高频率成分的谐波能量通过放大器(这是假定其有采样率远超过 Nyquist),对于特别快的快沿测量有帮助。其缺点是在低频段使被测信号严重衰减,特别是对3次谐波的衰减严重,导致眼图测量中产生"花生眼"。
Maximally Flat响应或者说矩形响应似乎是最接近我们教科书上对幅频特性的定义。但幅频特性接近理想状况并不意味着是最适合用于示波器的放大器前端。 其对于带宽范围内的正弦波测量有优势,但由于实际测量信号多是方波信号,矩形响应对于超过带宽范围内的高次谐波完全消除掉,会带来严重的相位失真。假想您购买的1GHz示波器是用于200MHz的信号测量,矩形响应会将5次谐波以上的能量完全消除掉。这对于上升沿比较快的脉冲信号测量是有问题的。
力科的 4th oder Bessel 响应曲线是对前两种的折衷考虑。它在频率含量最丰富的3次谐波含量衰减很小,在接近带宽的频段的相位信息没有失真。这对于串行信号测量是非常完美的幅频特性曲线。
下面图9是用力科采样示波器WE100H测量的5Gbps眼图,因为采样示波器带宽高,噪音小,A/D位数高,可作为周期重复性信号的眼图测量的标准。图10是用力科SDA1100测量的5Gbps眼图。 图11是用其它品牌的12GHz示波器测量的5Gbps眼图。一个有趣的现象是,12GHz带宽测量的眼图有“花生眼”出现。图12可以一目了然揭示出“花生眼”产生的原因,5Gbps串行信号的三次谐波是7.5GHz,高斯响应曲线在3次谐波处的衰减很大。
图8,示波器实际的波特图真相
图12,不同幅频特性曲线的对比
关键字:带宽 示波器
引用地址:再谈带宽
图1,数字示波器的原理框图
捕获部分主要是由三颗芯片和一个电路组成,即放大器芯片,A/D芯片,内存芯片和触发器电路,原理框图如下图2所示。被测信号首先经过探头和放大器及归一化后转换成ADC可以接收的电压范围,采样和保持电路按固定采样率将信号分割成一个个独立的采样电平,ADC将这些电平转化成数字的采样点,这些数字采样点保存在采集内存里送显示和测量分析处理。
图2,示波器捕获电路原理框图
至此,我们知道带宽f2即输出电压降低到输入电压70.7%时的频率点。根据放大器的等效模型,我们可进一步推导示波器的上升时间和带宽的关系式,即我们常提到的0.35的关系:上升时间=0.35/带宽,推导过程如下图6所示。需要说明的是,0.35是基于高斯响应的理论值,实际测量系统中这个数值往往介于0.35-0.45之间。在示波器的datasheet上都会标明“上升时间”指标。示波器测量出来的上升时间与真实的上升时间之间存在下面的关系式。在对快沿信号测试中,需要通过该关系式来修正实际被测信号的上升时间。
Measured risetime(tr)2 = (tr signal)2+(tr scope)2+(tr probe)2
图6,示波器上升时间和带宽的关系
示波器前端放大器幅频特性的波特图是新示波器发布的“出生证”。
图7,示波器波特图的计量方法
关于带宽的更深入讨论,我们需要谈到示波器前端放大器幅频特性的平坦度和滚降特性。力科的一
篇技术白皮书中对此有非常详细的解释。 http://www.lecroy.com/tm/Library/WhitePapers/PDF/Eye_Patterns_in_Scopes-designcon_2005.pdf
现在业界有三种幅频特性曲线,分别代表了三个品牌:Gaussian( 泰克), 4th oder Bessel (力科)和Maximally Flat(安捷伦)。
Gaussian响应在-3dB之后仍衰减很慢。其优点是允许被测信号的更高频率成分的谐波能量通过放大器(这是假定其有采样率远超过 Nyquist),对于特别快的快沿测量有帮助。其缺点是在低频段使被测信号严重衰减,特别是对3次谐波的衰减严重,导致眼图测量中产生"花生眼"。
Maximally Flat响应或者说矩形响应似乎是最接近我们教科书上对幅频特性的定义。但幅频特性接近理想状况并不意味着是最适合用于示波器的放大器前端。 其对于带宽范围内的正弦波测量有优势,但由于实际测量信号多是方波信号,矩形响应对于超过带宽范围内的高次谐波完全消除掉,会带来严重的相位失真。假想您购买的1GHz示波器是用于200MHz的信号测量,矩形响应会将5次谐波以上的能量完全消除掉。这对于上升沿比较快的脉冲信号测量是有问题的。
力科的 4th oder Bessel 响应曲线是对前两种的折衷考虑。它在频率含量最丰富的3次谐波含量衰减很小,在接近带宽的频段的相位信息没有失真。这对于串行信号测量是非常完美的幅频特性曲线。
下面图9是用力科采样示波器WE100H测量的5Gbps眼图,因为采样示波器带宽高,噪音小,A/D位数高,可作为周期重复性信号的眼图测量的标准。图10是用力科SDA1100测量的5Gbps眼图。 图11是用其它品牌的12GHz示波器测量的5Gbps眼图。一个有趣的现象是,12GHz带宽测量的眼图有“花生眼”出现。图12可以一目了然揭示出“花生眼”产生的原因,5Gbps串行信号的三次谐波是7.5GHz,高斯响应曲线在3次谐波处的衰减很大。
上一篇:DSO中的内插技术(一)
下一篇:再谈带宽(2)
推荐阅读最新更新时间:2024-03-30 23:08
普源示波器测量出来的数据怎样保存到U盘
电子产品的更新迭代速度越来越快,功能越来越强大,而且其设计的原理及结构也越来越复杂,很多情况下我们用示波器在做一个产品的测试测量任务可能一时半会完成不了,或者需要分阶段进行。这个时候我们就需要将我们前期得到的一些测量数据和图片保存起来,但是很多的示波器的存储空间很小,没办法存储那么多人的数据。这个时候我们就需要用U盘或移动硬盘等外部存储设备将这些数据资料保存起来,在需要的时候,我们又需要将这些之前保存好的数据和图片资料导入到 示波器,继续进行测量。很多的新手工程师们表示不知道怎么操作,安泰测试就跟大家介绍一下怎么从普源示波器导出我们需要的数据和图片资料。 普源示波器HDO4000系 现在很多的示波器,不管是国产示波器还是进口示
[测试测量]
为什么你的泰克示波器老“生病”?
示波器是电子测量中最常用的仪器之一。它不仅能够直接观测和真实显示被测信号,而且还可以观测脉冲信号的前后沿、脉宽、上冲、下冲等参数。为保证示波器的正常使用和测量精度,应对示波器定期进行检定和校准。通用示波器的很多技术指标难以用一般仪器直接检定,采取间接方法利用常用电子测量仪器既可达到检定的目的,又可以扩展它的使用范围,提高它的测量精度。因此示波器就成为了测试工程重要的工作伙伴,尤其是泰克示波器,是80%工程师都青睐的品牌。 很多工程师示波器使用一段时间就会发现仪器用起来有点怪,开机异响,画面不正常……那这示波器究竟是怎么了?是不是坏了呢?那么问题来了,怎么去避免示波器出现这些怪异现象呢?那就要定期对示波器进行体检的,但是有的工程
[测试测量]
是德科技推出首款具有 2 GHz 带宽的双通道 44 GHz矢量信号发生
是德科技(NYSE:KEYS)推出第一款双通道微波信号发生器,该产品可在同一台仪器中支持最高 44 GHz 的信号和 2 GHz 的射频(RF)调制带宽。是德科技是一家领先的技术公司,致力于帮助企业、服务提供商和政府客户加速创新,创造一个安全互联的世界。 通过降低测试设置的复杂度并减少无线空口(OTA)测试环境下的路径损耗,是德科技的新型 VXG 微波信号发生器可满足 5G 和卫星通信中非常苛刻的宽带毫米波(mmWave)应用的需求。 许多 5G 新空口(NR)应用都在使用更宽的信道带宽和在毫米波频谱内工作的有源天线阵列,来支持多输入多输出(MIMO)和波束赋形技术。针对在毫米波频率内部署的元器件和其他无线网络设备,3GP
[测试测量]
【乐拓USB示波器免费试用连载】乐拓USB示波器 对比测试
一、驱动安装 开箱之后,准备试用; 我的电脑安装的是WIN7系统,按照配套的LOTO驱动安装指南的指导进行安装,一次成功; 安装指南写的很详细,这里就不再复述。 二、TeKtronixTDS210数字示波器 在公司里一直使用的是TeKtronix TDS210数字示波器 TDS 210是一种小巧便携的数字实时示波器,具有60MHz的带宽,每个通道具有1GS/s取样率和2500点记录长度,双时基,视频触发功能,拥有RS232、GPIB、Centronics通信端口。 用这款示波器和乐拓的一起测试同一个信号来比较一下。 三、测直流1.2V 正式测试前,现将两个示波器的表笔都调至*1档 用我公司的一款控制器作为信号源 由右图为
[测试测量]
两种示波器测量眼图的差别比较
中心议题: 力科示波器进行眼图测量 新旧两款软件包使用方法不同 力科示波器捕获了50MS的数据,并一次性地对所有这些数据进行眼图测量,得到了18.73449M个比特位(UI)的眼图。如下图所示。 XXK的示波器捕获了574996个比特位(UI),但一次只能对这些UI中的8000个UI做眼图测量。如下图显示了“UIs:8000:574996,Total:8000:574966 ”。 如何才能对捕获到的所有的数据做眼图呢? 这是个问题。 如果您在使用的是XXK的老软件包RT-EYE,那么您需要在C:下的某个文件夹中找到某个tdsrt-eye文件进行手工修改,去掉这个限制,但在去掉之后如果您捕获数据超过5Mpts会容
[测试测量]
HDMI标准闲谈:10.2G是虚假带宽
众所周知的HDMI和Displayport的视频标准之争正在激烈进行。当然Displayport并没有大张声势,HDMI则在拼命造势。 这其中就有个带宽高低的争论。HDMI协会赶在Displayport1.0版本推出之前一个月急急忙忙推出其1.3版,将带宽号称到10.2G,缩小了和Displayport的1.0版本10.8G带宽的差距。虽然增加了传输的双倍的连接线,但是带宽的飞速提升是众人皆知的。 有很多网友奇怪,用HDMI1.3版的号称10.2G的带宽来传输2.2G视频带宽,这中间还有巨大的带宽空间,应该还可以传输更高的视频格式。为什么没有听说HDMI支持的新的视频格式呢?这个10.2G和Displayport的10.8
[模拟电子]
汽车曲轴位置传感器信号及波形分析-示波器
曲轴位置传感器也称为发动机转速传感器,它是发动机集中控制系统最主要的传感器之一,用来检测活塞上止点及曲轴转角的信号并将其输入发动机ECU,用于对点火时刻和喷油正时进行控制,同时它也是测量发动机转速的信号源。 发动机控制单元根据曲轴位置传感器提供的信号,确定曲轴所处的位置,保证了喷油正时与点火正时精确进行。同时,曲轴位置传感器中的1°信号也可提供发动机转速信号,发动机控制单元根据空气流量计信号和发动机转速信号确定基本喷油量。曲轴位置传感器通常安装在曲轴的前端或者后端。 曲轴传感器常见的有感应式和霍尔式。 用示波器测量的时候,对通道一链接一根BNC转香蕉头线,黑色香蕉头接一个鳄鱼夹搭铁接地,红色香蕉头线接刺针与传感器信号端
[测试测量]
利用高带宽混合信号示波器进行DDR验证和调试
DDR存储器,也称双倍数据率同步动态随机存储器,常用于高级嵌入式电路系统的设计,包括计算机、交通运输、家庭娱乐系统、医疗设备和消费类电子产品。DDR的广泛采用也推动着DDR存储器自身的研发,在DDR 1和DDR 2逐渐得到普及并成熟运用于某些行业的同时,新的DDR技术也开始出现在电子产品设计中,如DDR3(第三代DDR技术)和LPDDR(低功耗DDR技术)器件,它们能提供更高的性能。你可能认为DDR存储器的设计非常简明,但事实上,这些存储器件中更高的数据率和更低的电压常常会令你感到很难有设计裕量。此外,DDR接口是最为复杂的高速接口之一,因为每个存储器件上都有很多引脚;DDRII/III DQS、DQ等信号线不是简单的逻辑1和
[测试测量]
小广播
热门活动
换一批
更多
最新测试测量文章
更多精选电路图
更多热门文章
更多每日新闻
更多往期活动
- 降暑消消乐 和Silicon Labs一起消灭这包“以太网供电难题”
- 安森美半导体移动与可穿戴设备解决方案下载有礼!
- 有奖直播:ams投影照明(MLA)增强汽车与道路的沟通
- 拆招有礼:洞悉电子产品中的大数据,招招解决测量难题!Keysight DAQ970系列活动
- ADI和\"西北模电王\"邀您一起下载研读《新概念模拟电路》系列第一本电子书《晶体管》
- 微信直播慕尼黑东芝大展台,好礼多多等你来
- 赛灵思工业与医疗专题有奖问答
- 下载喽:PCIe要了解的10件事和识别协议的BSX系列BERTScope误码率测试仪技术资料
- 是德科技推出新的8通道示波器 点击获取报价
- 邀您观看 微信直播:户外照明智能互连解决方案 让TE连接光明与智能未来
11月13日历史上的今天
厂商技术中心