超声波流量计的测量原理详解

发布者:人妙果华最新更新时间:2016-05-04 来源: eefocus关键字:超声波流量计  测量原理 手机看文章 扫描二维码
随时随地手机看文章
超声波流量计是一种常用的流量计产品,是以“速度差法”为原理,测量圆管内液体流量的仪表,被广发用于治金、电力、给排水等领域中。超声波流量计的测量原理是什么呢?下面小编就来具体介绍一下,希望可以帮助到大家。
 
超声波流量计的测量原理
 
当超声波束在液体中传播时,液体的流动将使传播时间产生微小变化,并且其传播时间的变化正比于液体的流速,其关系符合下列表达式
 
其中
 
θ为声束与液体流动方向的夹角
 
M 为声束在液体的直线传播次数
 
D 为管道内径
 
Tup 为声束在正方向上的传播时间
 
Tdown为声束在逆方向上的传播时间
 
ΔT=Tup –Tdown
 
设静止流体中的声速为c,流体流动的速度为u,传播距离为L,当声波与流体流动方向一致时(即顺流方向),其传播速度为c+u;反之,传播速度为c-u.在相距为L的两处分别放置两组超声波发生器和接收器(T1,R1)和(T2,R2)。当T1顺方向,T2逆方向发射超声波时,超声波分别到达接收器R1和R2所需要的时间为t1和t2,则
 
t1=L/(c+u) t2=L/(c-u)
 
由于在工业管道中,流体的流速比声速小的多,即c>>u,因此两者的时间差为 ▽t=t2-t1=2Lu/cc 由此可知,当声波在流体中的传播速度c已知时,只要测出时间差▽t即可求出流速u,进而可求出流量Q。利用这个原理进行流量测量的方法称为时差法。此外还可用相差法、频差法等。
关键字:超声波流量计  测量原理 引用地址:超声波流量计的测量原理详解

上一篇:涡街流量计如何防雷?涡街流量计的防雷方法
下一篇:检测实验室应用测量不确定度问题的讨论

推荐阅读最新更新时间:2024-03-30 23:14

浮盘式液位计的测量原理及如何进行安装
前言 液体化工生产中有一类非常重要的设备——储罐,虽然这些储罐不直接参与生产,但其承担着生产物料的进出储存功能。储罐内物料液位的准确与否直接关系着生产的决策,运行的平稳,产品的效益,因此对储罐液位仪表的要求很严格,要求其准确可靠故障率低。 储罐液位仪表的选型 为提高场地使用率节省用地面积,液体化工企业在仓储建设中普遍建设高度在几米乃至十几米的大容积储罐,如此大范围的液位测量给仪表的选型带来困难,传统侧装式的液位检测仪表测量范围无法适应储罐液位检测的要求。 考虑到液体储存的危险性,处于安全的目的大多数液体储罐都是无压容器,即储罐顶部不承受压力或通过呼吸器等设备与大气环境相通。这样的状况可从储罐的顶部安装液位检测仪表,现有的储
[测试测量]
浮盘式液位计的<font color='red'>测量</font><font color='red'>原理</font>及如何进行安装
基于DSP的双频超声波流量计硬件电路设计
  1引 言   超声就是指频率高出可听频率极限(即在20 kHz以上的频段)的弹性振动,这种振动以波动形式在介质中的传播过程就形成超声波。超声波技术应用于流量测量的原理是:由超声换能器产生的超声波以某一角度入射到流体中,在流体中传播的超声波就载有流体流速的信息,利用接收到的超声波信号就可以测量流体的流速和流量。上世纪70年代以后,由于集成电路技术的迅猛发展,高性能、高稳定性的锁相技术的出现与应用,才使实用的超声波流量计得以迅速发展。超声波流量计结构简单,压力损失小,而且使用方便,因而得到了广泛的应用。   根据超声波声道结构类型可分为单声道和多声道超声波流量计;根据超声波流量计适用的流道不同可分为管道流量计、管渠流量计和
[单片机]
基于DSP的双频<font color='red'>超声波</font><font color='red'>流量计</font>硬件电路设计
固定式超声波流量计和便携式超声波流量计主要区别
固定式和便携式超声波流量计主要区别 (1) 适用的场合不同 固定式超声波流量计用于安装在某一固定位置,对某一特定管道内流体的流量进行长期不间断的计量;便携式超声波流量计具有很大的机动性,主要用于对不同管道的流体流量作临时性测量。 (2) 供电方式不同 固定式超声波流量计要求长期连续运行,所以要使用220V交流电源,便携式超声波流量计既可以使用现场的交流电源,也备有内置充电电池,可以连续工作5~10h[小时],大大方便了不同场合临时性流量测量的需要。 (3) 部分功能不同 因定式超声波流量计,通常都有4-20mA信号输出等功能,供远传显示使用,但其内部只能存贮一条管道的参数;便携式超声波流量计只是为了现场查看当时流量和短
[测试测量]
便携式超声波流量计用于现场管道流量测量的分析
现在盛行的便携式超声流量计使用方便灵活,一般适用于测量大口径管道的流量,然而现场应用的实际测量精度,常因工作疏忽,换能器安装距离及流通面积等测量的误差而造成精度下降。不正确的安装甚至会使得仪表完全不能工作。因此,仪表现场的安装与调试对于测量是非常重要环节,本文就现场使用超声波流量计所遇到的问题进行分析,总结出管道流量精确测量的方法。      一、超声波流量计的原理       超声流量计 利用超声波在流动的流体中传播时,可以载上流体流速信息的特性,通过接收和处理穿过流体的超声波信息就可以检测出流体的速度,从而换算成流量。它具有下列主要特点:①解决了大管径、大流量及各类明渠、暗渠的测量困难的问题;②对介质几乎无要求;③测量准确度几乎
[测试测量]
便携式<font color='red'>超声波</font><font color='red'>流量计</font>用于现场管道流量<font color='red'>测量</font>的分析
便携式超声波流量计在油田的应用分析
随着科技的发展与应用的拓展,人们对于仪表产品的易用性与灵活性提出了更多的要求,与此同时,仪表行业的产品升级换代的工作也在加速进行,近年来出现了很多类型的新型仪表,便携式超声波流量计就属于其中一种。便携式超声波流量计属于超声波流量计的一种,超声波流量计作为一种以超声波时差式和多普勒方式工作的流量仪表,因为超声波流量计的流量测量准确度几乎不受被测流体温度、压力、粘度、密度等参数的影响,又可制成非接触及便携式测量仪表,故可解决其它类型仪表所难以测量的强腐蚀性、非导电性、放射性及易燃易爆介质的流量测量问题,其优异的性能赢得用户的钟爱。 便携式超声波流量计具有安装快捷、使用灵活的特点,但在使用时必须掌握准确方法。通过多年对现场操作经验的总结,
[测试测量]
便携式<font color='red'>超声波</font><font color='red'>流量计</font>在油田的应用分析
手持超声波流量计的使用说明
1、在测量管道比较老旧的工矿,尽量不要使用2声层(V法)安装传感器,应首先选用1声层(Z法),这样的安装方法,对超声波流量计的流量传感器发出的超声波,很容易被对测的流量传感器接收,而流量计主机的信号强度得到保证,并能保证高精度的测量值。 2、在测量新管道时,当遇到有油漆或渡锌管道的时候,可以用粗纱先处理管道表面,然后再用细纱继续处理,这样保证超声波流量计的流量传感器安装点光滑、平整,超声波流量计计的流量探头可以良好的与所测量管道外壁接触。 3、当管道是竖直向上的走向时,如果管道内的流体是自下向上流的,可以测量,如果液体是自上而下的流,这个管道是不适合做流量数据采集的。 4、另外在对某管道进行流量数据采集前,一定要自己去
[测试测量]
手持<font color='red'>超声波</font><font color='red'>流量计</font>的使用说明
压力测量原理和应用
作为最普通的物理量,压力度量具有各种不同现场的应用。设计工程师需熟悉几种不同的技术才能选择出适当的产品应用其现场。 自重检测器. 自重测试仪或活塞仪是最基本的压力测量技术,广泛用于压力传感器的刻度校准。该装置可通过活塞在流体(一般为液体)上施加压力来校准重量(质量)。自重测试仪可被用于主要标准,因为影响精度的因素来自于质量、长度和时间的标准。活塞仪操作简单;压力可通过旋转螺旋起重机减少测试目标内的流体体积而产生。在通过减少体积产生的压力会比活塞上的总量产生的压力略高时,活塞会升高直至仪表压力和活塞底部的压力平衡并严格相等。系统的压力将为: P = W/A (1) 这里:W =活塞加上砝码的总量 A =活塞的有
[测试测量]
解析示波器基本原理以及测量方法
  示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅   使用步骤   (1)先预调:反时针旋转辉度旋钮到底,竖直和水平位移转到中间,衰减置于最高档,扫描置于“外X档”;   (2)再开电源,指示灯亮后等待一两分钟进行预热后再进行相关
[测试测量]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved