探头进阶之——差分和单端有源探头的性能差别

发布者:yuehui最新更新时间:2016-08-17 来源: eefocus关键字:探头进阶  差分  单端  有源探头 手机看文章 扫描二维码
随时随地手机看文章
引言 

过去在使用高带宽示波器和有源探头进行测量时,您可以选择单端探头或差分探头。一般是用单端探头测量单端信号(对地电压),用差分探头测量差分信号(正电压—负电压)。虽然也可以只买差分探头,用差分探头测量差分信号和单端信号,但出于一些实际考虑,多数人并不这样做。理由是,在安捷伦推出革新性方案之前,差分探头和单端探头是两套探头,通常价格高和难以使用,而且带宽也比单端探头低。
新的Agilent InfiniiMax探头系统既可用于差分检测,又可用于单端检测,从而排除了过去拒绝差分探头的理由。新的探头系统使用可更换的探测接头,适于点测、插孔连接和焊点埋入连接的测量方式。
对于这种新的探测方式,您需要确定是用差分探头还是单端探头测量单端信号。为作出最好的决定,需要考虑差分探头与单端探头在性能和可用性方面的优缺点。

这篇应用指南在如下几方面比较了差分探头和单端探头的优缺点:
 · 带宽、保真度和可用性
· 共模抑制
· 探头负载效应
· 测量的可重复性
· 物理尺寸


单端探头模型 



差分探头模型

图1 差分探头和单端探头简化模型 


我们用简化模型(图1)帮助比较,对于Agilent 1134A 7GHz探头放大器,分别使用焊点埋入连接的差分探测头和 

单端探测头测量数据。这两种探测头有非常接近的物理连接尺寸,因此主要是差分和单端电路元件的布局带来的性能差别。图2和图3是这些探头的照片。
为测量探头性能,我们使用Agilent E2655A去时滞∕性能验证夹具,Agilent 8720A 20GHz矢量网络分析仪和Agilent Infiniium DCA86100取样示波器。 

带宽、保真度和可用性比较 

如前所述,在安捷伦未推出革新性方案前,单端探头通常有比差分探头更高的带宽。但这一结果是来自某些基本物理定律,还仅仅是来自不同结构的实际实现方法?
为回答这一问题,让我们考虑图1差分探头和单端探头连接中寄生参数的简化模型。由于单端和差分探测头的几何尺寸大致相同,因此电感和电容分布参数的量值也相当。如果接地连接使用又宽又平的导体(就像“刀片”),单端探头的接地电感(lg)会稍低一些,但也低不到哪里去。应注意差分探头在其两个输入上都有补偿阻尼,而单端探头只在信号输入上有补偿阻尼,地线上没有阻尼(在实际探头中是0Ω电阻器)。这些补偿阻尼用于消除输入连接中电感器(Ls)和电容器(Cs)所造成的谐振。要更深入了解这一话题,请参看Agilent应用指南1404“高带宽探头的保真度”。 



2 Agilent 1134A单端焊点埋入探测头(上)和差分焊点埋入探测头(下) 



图3 开盖的单端(上)和差分(下)焊点埋入探测头 

从对单端模型的分析,可看到带宽决定于电感和电容值,其中对地电感(lg)起着重要的作用。在较高频率下,对地电感会在被测信号地与探头地之间产生一个电压,从而减小了探头衰减器∕放大器处的信号。您可通过减小对地电感来增加带宽。这就需要缩短接地线的长度,或增加连接的面积。理想的接地线应是非常短、又比较宽的导体平面或围绕信号连接的环形圆柱体(形成同轴的探头连接)。在实际的测量条件下,理想的接地线通常是不现实的,而且会大大降低单端探头的可用性。

图4 差分探头和单端探头的频率响应 


此外,在使用圆柱接地环地条件下给出指标的单端探头带宽指标,是不具备实际意义的,因为在实际测试中,您基本上无法采用这种方式来测量。
如果您分析由差分信号(vcm=0,vp=vm)驱动的差分模型,就会看到由于正负信号连接的固有对称性,在连接间就会存在一个没有净信号的平面。您可认为该“有效”地平面牢固地接到被测信号的地平面和探头放大器的地。考虑到有效地平面的存在,即可分析半电路模型,此时信号地的环路面积近似为单端环路面积的一半,所以电感要低得多。从半电路模型分析可看到差分模型的带宽要远高于单端模型。此外,有效地平面是理想的接地连接,而且毫不影响其可用性。
当差分探头受单端源驱动时,您可用叠加法确定总响应。当vcm=vp=vm时,即电路中施加了单端信号。对于叠加的第一项,把vcm“关闭”;对于叠加的第二项,把vp和vm“关闭”。第一项是差分部分对单端信号的响应,因此该响应和前面的讨论一致。第二项是共模部分对单端信号的响应,因此其响应决定于探头的共模抑制。如果探头有好的共模抑制能力,那么对单端信号的总响应就只是对单端信号差模成分的响应。如果探头的共模抑制不好,就会看到测量差分信号和测量单端信号的差异。从图4可看到这些响应实际上并无差别。
图4示出用差分探头检测单端信号(绿色)和用单端探头检测单端信号(蓝色)的频率响应,两者都使用同样的7GHz探头差分放大器。探头的带宽定义为探头输出幅度相对输入幅度下降到-3dB处的频率。显然,差分探头的带宽要比单端探头高得多(7.8GHz对5.4GHz)。这两种探头都有很高的频率平坦度,因为在连接中使用了正确的阻尼电阻。
图5示出对于输入约100ps上升时间的阶跃信号,差分探头所测的时域响应。图6示出对于输入约100ps上升时间的阶跃信号,单端探头所测的时域响应。在这两个图中,红色迹线是探头的输出(即示波器屏幕上显示地波形),绿色迹线是探头的输入(即探头探上被测对象后,被测信号地波形)。应注意这不是探头的阶跃响应,而只是测量它们是否能跟踪100ps的阶跃。为测量阶跃响应,必须有非常完美的输入,即有极快上升时间的阶跃,此时差分探头能显示出比单端探头更快的上升时间。这两种探头都能很好跟踪100ps的阶跃。



图5 差分探头对100ps阶跃的时域响应


单端探头对100ps阶跃的时域响应


图6 单端探头对100 ps阶跃的时域响应

 

 

共模抑制问题

 

共模抑制是差分探头和单端探头都存在的问题。对差分探头来说。共模抑制使加至探头输入+ 和 - 的相同信号

 
不产生输出。对单端探头来说,共模抑制使加至信号输入和地输入的相同信号不产生输出。
差分探头和单端探头模型(图1)示出从探头衰减器∕放大器地到“大地”的电阻和电感。这是由探头电缆屏蔽和大地构成的传输线(或天线)所造成阻抗的简化模型。这一“外模式”阻抗是重要的,因为在单端探头上施加共模信号时,地电感就与该外模式阻抗构成分压器,从而衰减了放大器得到的地信号。由于放大器的信号输入没有得到与地输入同样的衰减,这就在放大器的输入端造成一个净信号,并由此产生一个输出。地电感越高,共模抑制就越低,因此您在使用单端探头时,务必使地线尽可能短。还应注意该外模式信号并不直接影响“内模式”信号(即同轴电缆内的正常探头输出信号),但反射的外模式信号将影响探头放大器的地,从而间接影响内模式信号。“测量可重复性”部分对此有进一步的说明。
当共模信号施加至差分探头时,在 + 和 - 输入端至衰减器∕放大器上可看到同样的信号。所产生的输出将是放大器共模抑制能力的函数,而并非由连接感抗造成。

 

 

图7 差分探头和单端探头的共模响应

 

当您检测带有共模噪声的单端信号时,需要确定是差分探头,还是单端探头有更好的共模抑制能力。这取决于单端探头的接地连接电感,以及差分探头中放大器的共模抑制能力。对于本例中的差分和单端探测头,图7示出差分探头的共模抑制要比单端探头高得多,因此能在高共模噪声环境中进行更好的测量。这是两种探头的一般情况,除非单端探头有极低电感的接地连接,但这在现实中是难以实现的。应注意这里分析的单端探头,是安捷伦InfiniiMax 1130系列,远好于其它的许多单端探头的共模抑制能力,因为它的地线很短。图7中的共模响应定义为:
差分共模响应= 20[log(voc/vic)]
这里vic是+和-输入的公共电压,voc是施加vic时探头输出处的电压 
单端共模响应= 20[log(voc/vic)] 
这里vic是信号输入和地输入的公共电压,voc是施加vic时探头输出处的电压
 

 

差分探头和单端探头的输入阻抗

图8 差分探头和单端探头的输入阻抗

 

探头负载效应比较

 

如果您用差分探测头和单端探测头的电感和电容值分析图1中的电路模型,您将发现从单端源看过去的各探测头输入阻抗没有多少差别。分析的另一方面是了解外模式阻抗如何影响差分和单端探头。在单端探头放大器模型中,外模式阻抗要比接地连接阻抗高得多(由于存在lg),因此它对输入阻抗并没有明显影响。但由于存在外模式阻抗,进入差分探头的单端信号将看到较高频率比较低频率有略低的容抗值。
图8是差分探头和单端探头的输入阻抗(幅值)图。红色迹线是施加差分源时所看到的差分探头阻抗。绿色迹线是施加单端源时看到的差分探头阻抗,蓝色迹线是施加单端源时看到的单端探头阻抗。在图8中标注了这三种情况的DC电阻、电容和最小电感值。应注意差分探头和单端探头对单端信号的输入阻抗很类似。

 

测量的可重复性

 

测量的可重复性是与高频探头相关的问题。在理想情况下,探头位置,电缆位置和手的位置都不应造成探头测量结果的变化。但许多情况下都并非如此。通常的原因是外模式阻抗的改变。这一阻抗实际上远比所示的探头模型复杂,因为未经屏蔽的传输线(或天线),探头、手和电缆位置都会造成极大的影响。
如果您通过改变外模式阻抗分析单端模型,就发现它会造成响应的变化。此外,由于外模式阻抗也是共模响应中的一个因素,因此该阻抗的变化也造成共模抑制的变化。接地连接的阻抗越高,对响应的影响就越大。
通过改变外模式阻抗分析差分模型,可发现这一变化只引起响应的很小变化。在探头放大器地上出现的任何信号都会受到放大器的共模抑制。因此,由探头、手和电缆位置引起的响应变化可得到很大的衰减。
从上面的图4中可看到差分探头的响应要比单端探头平滑得多。单端探头响应中有许多由外模式阻抗的变化所造成的“扰动和扭曲”。当阻抗变化时,响应也随之变化。探头电缆上的铁电磁珠能通过衰减和限制外模式信号减小外模式信号的变化量,从而缓解这一问题。它能减小探头、手和电缆位置造成的响应变化。


 

物理尺寸考虑

 

通过前面对差分探头和单端探头的比较,可看到不管是检测差分信号,还是检测单端信号,差分探头在各方面的性能都优于单端探头。但有时仍可考虑使用单端探头。单端探头在许多测量情况下能够提供可接受的结果,它价格低,由于探

 
头前端较为简单,因而体积也较小。从物理上考虑,小的探头能检测到狭窄的地方,和把多个探头接到非常密集的被测点。因此在一个探测系统中,最好是既能作差分检测,又能作单端检测。

 

 

总结

 

由于地跳、串扰和EMI问题,电子行业正在用差分信号取代单端信号。对于在这一新领域中使用的测量设备,差分检测是必不可少的要求。因为差分探头中信号连接间的有效地平面比单端探头中的大多数实际地连接(非同轴)更为理想,所以差分探头对单端信号的测量比单端探头更好。新一代差分探头易于使用、性能高、价格低,您可用来检测差分信号和单端信号。
我们写这篇文章的目的是,与您共同分享安捷伦科技的最新技术突破,若您正面临着高速数字设计测量方面的挑战,安捷伦最新推出的两款高性能示波器(6GHz带宽的54855A和4GHz带宽的54854A)以全新的技术站在了业界的最前沿,她的前沿性具体表现在以下几个方面:第一,每个通道后面都采用一个20GSa/s 模数转换器,一方面能保证在四个通道同时使用时,每个通道都可实现20GSa/s的采样速率,而无需使用交叉采集的方式,用多个低速模数转换器凑成高采样速率,另一方面,在作抖动分析等高级时序测量时,精准性更高;第二,对于需要深存储器的场合,四个通道同时使用时,每个通道后面最多可提供32M的存储深度,为业界树立了新标准;第三,打破了多年来,探头连接技术带给用户的困扰,将业界的差分探头技术由3.5GHz带宽提升到7GHz,配合示波器使用可真正实现6GHz的系统带宽,在探头技术方面的另一突破是,您可使用各种各样的前端附件,而且保证不牺牲探头的整体带宽,即使您使用10cm长的前端连接,这对测试一些空间很狭小地方的测试点是很重要的。
若您想了解更详细的信息,可访问 www.agilent.com/find/InfiniiMax ,并欢迎您和我们联系并讨论任何相关的问题。

 

术语表

 

带宽 - 频率响应的幅度等于-3 db(0.707)处的频率。
共模成分 - 两信号相等的成分。
共模抑制 - 对提供输入1-输入2功能的电路,输入1和输入2的共模成分不产生输出。
差模成分 - 两信号大小相等,极性相反的成分。
差分信号 - 使用两个导体的一种电子信号发生方式,一个导体上的信号与另一个导体上的信号大小相等,极性相反。
频率响应 - vo(s)/vi(s),其中vo(s)是作为频率函数的输出信号,vi(s)是作为频率函数的输入信号。
半电路分析 - 分析对称电路的一种方法,对称线一边的所有电流和电压与另一边大小相等,极性相反。可把对称线上的各结点连到一起,把它作为分析中的公共结点或地结点。 
外模式 - 在同轴线外导体上传输的信号。
外模式阻抗 - 同轴线外导体对大地或局部地(例如天线)的阻抗。
单端信号 - 使用一个信号导体和一个公共地导体的一种电子信号发生方法。通常公共地导体上没有信号,信号导体传输相对地导体的信号。 
阶跃响应 - 网络对理想阶跃的响应。理想阶跃的上升时间为零。
叠加 - 在线性系统中,由多个独立的源激励产生的系统输出,可以通过把每个源单独激励产生的系统输出相加得到。

关键字:探头进阶  差分  单端  有源探头 引用地址:探头进阶之——差分和单端有源探头的性能差别

上一篇:谈示波器第一回——模拟还是数字?
下一篇:高频示波器探棒频宽需要校正吗

推荐阅读最新更新时间:2024-03-30 23:21

精密差分输出仪表放大器解析
   采用最先进技术的模数转换器(ADC)能够接受差分输入信号,从而允许将来自传感器的整个信号路径以差分信号的形式传送给ADC。这种方法提供了显著的性能优势,因为差分信号增加了动态范围,减小了交流声,并且消除了对地噪声。      图1a和1b所示的是两种常见的差分输出仪表放大器电路。前者提供单位增益,后者提供了2倍增益。但是,与单端输出的仪表放大器相比,这两种电路都会受到增加噪声、失调误差、失调漂移、增益误差和增益漂移的影响。   图1a,1b:设计差分输出仪表放大器的通用方法。上部电路保持增益,下部电路将增益加倍。   In-amp=仪表放大器   Output Voltage=输出电压   op amp=
[模拟电子]
可检测差分GPS校正信号的窄频移数字鉴别器电路
美国海岸警卫队(U.S. Coast Guard)通过低频(285~325kHz)发射台给GPS信号(DGPS)发送差分校正信号。发送数据率为100bps或200bps。此调制为最小频移键控(MSK),会产生载波偏移为位速率的一半的伪频移键控(FSK)。对于100bps信号,载波偏移只有±25Hz。对于1kHz的接收器IF频率,IF信号偏移在975~1,025Hz之间。两组数据对应时间分别为1,026μs和976μs。 检测调制信号的最初工作都集中在锁相环和模拟鉴别器上,两者都需要针对每种速率进行优化或调节。此外还考虑了元件老化的影响。这样就开发了一种测量IF信号各周期长度的5V CMOS电路数字方法。当交流耦合IF信号峰峰值在
[测试测量]
可检测<font color='red'>差分</font>GPS校正信号的窄频移数字鉴别器电路
是德科技KEYSIGHT示波器高压差分探头N2791A使用说明
示波器用户经常需要进行浮地测量。在这种测量中,任何测量点都不会接地。使用N2791A高电压差分探头,示波器可以进行安全和精确的浮地测量。 主要特性: · 25 MHz 带宽 · 用户可选择衰减设置:10:1 或 100:1 · 在 100:1 模式下,额定的差分和共模电压测量值高达 ±700 V · 由 4 节 AA 电池供电或由示波器或计算机的任何一个 USB 主机端口供电 附件包括: · 两个伸缩式挂钩探针 · 两个鳄鱼夹 兼容的示波器: · 兼容任何带 1 MΩ BNC 输入的示波器 使用 N2791A 25-MHz 低成本高压差分探头,示波器可以进行安全和精确的浮置测量。 借助 N2791A 差分探头,您就能使用普通的
[测试测量]
是德科技KEYSIGHT示波器高压<font color='red'>差分</font><font color='red'>探头</font>N2791A使用说明
场效应管特性及甲类功放的设计
场效应管特性及单端甲类功放的设计 场效应管不仅兼有普通晶体管和电子管的优点,而且还具备两者所缺少的优点。场效应管具有双向对称性,即场效应管的源极和漏极是可以互换的(无阻尼),一般的晶体管是不容易做到这一点的,电子管是根本不可能达到这一点。所谓双向对称性,对普通晶体管来说,就是发射极和集电极互换,对电子管来说,就是将阴极和阳极互换。 场效应管控制工作电流的原理与普通晶体管完全不一样,要比普通晶体管简单得多,场效应管只是单纯地利用外加的输入信号以改变半导体的电阻,实际上是改变工作电流流通的通道大小,而晶体管是利用加在发射结上的信号电压以改变流经发射结的结电流,还包括少数载流子渡越基区后进入集电区等极为复杂的作用过程。场
[模拟电子]
高压探头差分探头的区别
高压探头是1:10,1:100,1:1000等等的衰减比例,当信号接入示波器,万用表,电脑等等时,因为以上的设备,所以要通过高压探头将电压衰减(只是电压缩小了其它参数不变)到设备可测的范围内才能准确的测试出来。 差分探头是示波器的一种测量探头。差分探头因此成为现代示波器的主流配件。 差分测量特点: 探头从总体上可分为无源探头和有源探头两大类型,而宽带宽示波器和有源探头的用户还需要在单端探头和差分探头之间还要做出选择。承载差分信号的那一对走线就称为差分走线。本文主要讲的是差分探头。差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面: 1.抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是
[测试测量]
8389瓦单声道功率放大器
功率放大器,简称“功放”。很多情况下主机的额定输出功率不能胜任带动整个音响系统的任务,这时就要在主机和播放设备之间加装功率放大器来补充所需的功率缺口,而功率放大器在整个音响系统中起到了“组织、协调”的枢纽作用,在某种程度上主宰着整个系统能否提供良好的音质输出。
[模拟电子]
如何定制差分晶振应用电路方案
其实,关于定制定制差分晶振应用电路方案,首先要根据企业的需求进行定制,因为不同的企业可能对于定制差分晶振应用电路定制需求是不同的,在这些方面应该准确的了解自己的需求,然后在进行定制的。下面给大家分享一些如何定制差分晶振应用电路方案吧! 定制差分晶振应用电路方案一:方案的运作费用 其实,选择不同的公司定制差分晶振应用方案的费用的是不同的,一般在执行差分晶振应用电路方案的时候是需要一定的运作费用,比如人员的安排,研发的难以程度,公司的安排等等这些都是需要注意,尤其是定制差分晶振应用电路方案的需要根据企业的需求进行确定,因为只有这样的开发才合适。 当然,有能力的企业可以直接通过差分晶振应用电路公司进行这差分晶振应用电路方案的定制
[嵌入式]
根据交流连续性排查电缆的故障
  本文详细介绍了一个用于检测交流连续性的测试装置,该装置能够完成外部测试和维修工作。该电路可提供一个简单“通过/未通过”测试定位多芯电缆的故障。   开路故障及可能发生在连接器端。利用交流连续性检测仪识别故障端,可以准确地断开并修复电缆端,从而避免因错误地断开一个工作正常的连接器使其损坏的风险。这种方法还可用来测试终端处于不同位置的电缆。   图1所示电路利用一个连续性测试仪向一条缆线注入交流信号,在另一条缆线检测是否存在电容耦合。故障电缆的一端可以观察到连续的交流信号,而另一端在一个或多个连接器引脚上观察不到连续的交流信号。因为电缆短路表现为良好的连接,测试人员只需要短路测试引脚即可确认测试装置是否工作正常。
[工业控制]
根据交流连续性排查电缆的<font color='red'>单</font><font color='red'>端</font>故障
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved