图文解析能源之星LED照明测量标准及检测细节

发布者:WiseThinker最新更新时间:2016-09-07 来源: eefocus关键字:LED照明  测量标准  检测细节 手机看文章 扫描二维码
随时随地手机看文章
    为加速LED照明商品化,北美能源之星针对LED照明产品特性,订定迥异于传统照明的测试规范,包含环境温度测试、积分球量测、配光曲线等,透过LED照明产品测试方式定义的一致性,区分出LED照明装置的优良,有利于质量升级。 


  美国能源之星(Energy Star)已陆续发布针对固态照明产品的检测规范定义,文件当中包含检测项目、检测方法依据的规范、须检测的样品数量及合格判定的规格数值,另外对于可进行测试的授权实验室也有明确说明。在能源之星对固态照明产品测试所引用的规范当中,异于传统照明的部分,包含ANSI C78.377-2008、北美照明协会(IESNA)LM-79-08、IESNA LM-80-08三份规范(图1),本篇文章将仅就ANSI C78.377-2008及IESNA LM-79-08的检测细节进行说明,并针对检测所需的仪器设备原理介绍。

图1 能源之星对固态照明之检测规范依据:ANSI C78.377-2008、IESNA LM-79-08、IESNA LM-80-08

  固态照明灯具色温等级较广

  此规范包含美国国家标准中针对固态照明产品的光色特性规格定义,适用于室内使用的灯具,不包括户外灯具。其中,重点有两部分,其一是定义相对色温(CCT)的分级,其次是针对同一相对色温标称等级其允许的色温变异范围作定义。

  规范中所述固态照明的光色规格要求,源自于荧光灯的光色分级规格,但有鉴于固态照明尚处于起步阶段,未如荧光灯发展已趋于成熟,因此在定义光色要求时,采取较大的变异范围。目前规范对固态照明灯具区分为八个色温等级,分别为2700K、3000K、3500K、4000K、4500K、5000K、5700K及6500K(图2)。


 
图2 八个相对色温指定值在CIE 1931之区域定义

  图2中六个椭圆区块为ANSI C78.376定义荧光灯的色温等级区块,其所采取的色温允许变异范围为七阶MacAdam椭圆范围。对于固态照明,将允许变异范围加大,图2中的八个菱形区块即为固态照明的八个色温等级色度坐标(x,y)范围。色温分级有助于固态照明供货商及使用者有共同的色温标准语言。另外,此规范也定义演色性(Color Rendering Index, CRI),作为评估固态照明光色特性的另一指标。对于量测光色特性的方式,则对应到LM-79规范。

固态照明不适用传统量测 IESNA定义新方法

  IESNA LM79-08于2008年公布,为测试方法的标准规范,内容针对固态照明的发光效率(单位:每瓦流明数(lm/W))、光通量(单位:流明(lm))、光强度的空间分布、色度、色差、光色空间均匀性、相对色温及演色性等进行量测方式与对应设备要求定义。

  先前传统照明多是将灯具及光源分开量测,但固态照明可能出现灯具及光源合为一体的情况,因此原先针对传统照明定义的规范并不适用。IESNA特别制定此规范,希望藉由定义量测程序方法,将表现固态照明特性的参数,具有量测可重现性,并统一固态照明产品光电特性的量测手法,避免因量测方式不同造成争议。

  该规范适用于以发光二极管(LED)为主包含电子控制装置及散热机构,且使用交流或直流电源驱动的固态照明产品。此规范所涵盖的固态照明产品是一个结合灯具与灯源的照明产品,如整合式LED灯泡,不包含须额外使用电子控制装置或散热机构(如LED芯片、LED组件及LED模块)的固态照明产品,也不涵盖供LED光源使用但不包含LED光源贩卖形式的灯具。另外,此规范也不适用于确定个体间产品性能的差异。

  测试环境温度须控制

  此份规范定义量测时的环境温度为25±1℃,且量测时,温度量测点须距离灯具1公尺内,高度须与灯具同高并避免光源的辐射热影响。量测时固定灯具的治具,也须避免热传导及阻碍空气的自然流动。此外,此规范量测的光电性能,不须将灯源或灯具进行1,000小时的点灯后才进行测试。

  为确保待测灯具在测试过程中是稳定的,测试前灯具须进行热灯动作,使温度达到平衡,热灯时间则依灯具而定,如整合式LED灯泡约需30分钟就能达到平衡,大型灯具可能需1小时或更久的时间。

  是否达到稳定的标准,可用光源输出如固定点的光强度或消耗功率的表现来判定。若热灯30分钟,在15分钟内至少取三个量测值,将最大值减最小值的差除以平均值,结果须小于0.5%,如此可判别灯具是否已热机完成,实际热灯时间须于检测报告中注明。量测过程中灯具的摆放方式须为灯具在正常使用下的姿态。

  此份规范定义两种光通量的量测系统方法,一是使用积分球系统,另一种则为使用配光曲线仪系统。使用哪种系统须依据所要量测的量(颜色、光强度分布)及待测样品尺寸等来决定。

  积分球量测系统不需暗房条件

  此方法适用于量测小尺寸固态照明灯具的全光通量及颜色特性,它的优点是快速、且不需暗房即可量测,在球内量测时空气的扰动可降低,但对于包含散热装置的整合式灯具就要注意散热导致温度的上升。

LM-79对于积分球的选用有几项重点:首先是积分球的尺寸应要够大,以避免灯体发出的热能使温度升高,以及因文件板及待测灯体自行吸收所导致的量测误差。另针对积分球的大小,若是量测小型灯泡(如传统灯泡、省电型灯泡),建议球体直径≧1公尺;量测4呎(约120公分)的荧光灯管、HID灯等较大灯型,建议球体直径≧1.5公尺;量测500W或更大功率的灯型,则建议球体直径≧2公尺。

  规范中定义使用积分球各装置的几何架构如图3所示。共有两种,一种为4π,另一种为2π。在4π的几何架构,固态照明产品的总表面积不可超过球壁总面积的2%,例如,在一个2公尺积分球内,待测物若为一个球状物,其直径必须小于30毫米。若为线状产品,其纵向尺寸应小于球直径的三分之二。在2π架构,安装固态照明产品的开口直径应小于球直径的三分之一。另外固定灯具的治具不可导热,以避免影响球体温度。

  图3 积分球装置之几何架构。(a)为4π架构,灯体放置于球体中心,(b)为2π架构,适用于前射发光型之光源,灯体放置于球体侧面。

  内部涂层反射率则须达90~98%。积分球内的涂层反射率较高,于量测时可得到较高的讯号,且对于积分球内不均匀的空间响应及固态照明光强度分布变化所引起的误差也可降低。但反射率高时,球体开口尺寸大小对平均反射率的影响就须予以评估。

  积分球内应装有辅助灯,其作用在于评估灯体自吸收的部分,以得到自吸收因子。档板大小应尽量缩小,但须能防止球体所允许量测最大尺寸灯体的光线直射侦测器。而文件板的放置位置,一般建议为从侦测器算起,介于球半径三分之一至二分之一长度的距离为文件板位置。另外辅助灯也须有档板,作用一样是避免光线直射侦测器。

 
图4 常见用以校正用之石英钨丝白炽灯

  测量全光光谱辐射通量的标准灯通常是石英钨丝白炽灯(图4)。它有较宽的连续光谱表现,因此用以校正可见光域的光谱辐射计。对于2π球体,仅需前半面发光的标准灯,作法可将石英钨丝白炽灯,加上反射罩使光线为前射型。对于4π球体,通常使用全向发光的标准灯,但也可用前射标准灯。

  须注意的重点为标准灯的点灯摆放位置将影响结果,也就是说,如果标准灯送往校正单位进行量测时,其摆放位置为何,在传递至待校正的系统时,标准灯摆放的方式要相同。另外对于待测光源的光型分布与标准灯的光型分布差异大时也会影响量测值,例如,待测光源是窄角光型的分布,但标准灯为全向近乎等量的光型分布,若以此种标准灯进行校正,再量测窄角光型灯源,结果必定差异很大,因此可准备多种光型分布的标准灯进行校正,以量测不同光型分布的待测样品。 以积分球形式量测可搭配两种侦测器,一种为V(λ)亮度计(积分球-亮度计系统),另一种为光谱辐射计(即光谱仪)(积分球-光谱辐射计系统)。

与亮度计共享可量测全光通量

  积分球-亮度计系统所使用的V(λ)亮度计可用以量测全光通量,但对于亮度计探头上的滤片,其光谱响应S(λ)对人眼的明视觉光谱视效函数V(λ)匹配不佳时,将导致量测上的误差,尤其是固态照明为白光光源时,多以蓝光激发黄色荧光粉产生,在蓝光波段的视效函数匹配不佳时,差异的比例就会加大,图5即说明视效函数匹配问题。亮度计探头的光谱响应与V(λ)曲线不匹配的程度,CIE用来表示f''''1,f''''1值越小两者间不匹配的程度越小。另外,使用V(λ)亮度计为侦测探头时,无法进行光色特性的量测。



  图5 白光LED多以蓝光激发黄色荧光粉,在蓝光波段(图中箭号表示)处,亮度计探头的视效函数(虚线表示)响应与CIE V(λ)匹配不佳时,差异的比例就会加大。

  撘配光谱仪可消除V(λ)失匹配误差

  由光度量定义,只要测出被测光源的光谱功率分布,再与V(λ)加权积分,就可以求出相对应的光度量,这种测量光谱光度量的方法为分光法。用分光法可以消除探头的V(λ)失匹配和被测光源与标准光源的光谱功率分布不一致所带来的误差。光源的光谱辐射功率分布由光谱辐射计测量,分光法测量光度量的精度主要取决于光谱辐射计的线性动态范围、重复性、光谱波长误差、杂散光和标定误差等。

  藉由量得的光源光谱辐射功率分布即可进行光色特性数值的计算,包含色度、相对色温及演色性(CRI)。

  此类系统必须参照一个有校准到全可见光域分光辐射通量标准灯来进行校正。其量测原理为通过与参照标准ΦREF (λ)比较,可得到被测固态照明产品的总分光辐射通量ΦTEST (λ),关系式如公式(1)。 

………………公式(1)


公式(2)中,yTEST (λ)为待测样品在此系统下的光谱辐射计的读值、yREF(λ)为参照标准灯在此系统下的光谱辐射计的读值,α(λ)则为自吸收因子。

 ………………公式(2)


yaux,TEST (λ)为不点亮待测样品,点亮辅助灯,在此系统下的光谱辐射计的读值;yaux,REF (λ)则为不点亮参照标准灯,点亮辅助灯时,在此系统下的光谱辐射计读值。从测得的ΦTEST (λ)(单位:W/奈米)总分光辐射通量,可使用公式(3)计算总光通量 ΦTEST (单位:流明)。

………………公式、(3)

欲获得光源光型分布信息 非使用配光曲线量测不可

  配光曲线量测系统可提供待测光源灯具光强度在空间中的分布,进而透过积分运算得到光通量,此时的光通量可经计算得到全光通量、区域光通量的信息。

  此系统也可支持较大型灯具量测。配光曲线量测系统须有暗房、良好的环境温度控制及避免空气扰动,尤其对于对温度敏感的固态照明灯具尤其重要。因配光曲线仪为量测空间中各点的光强度值再进行运算,相较于积分球,配光曲线量测系统的量测很耗时,但对于必须得知光源光型分布的情况,就不得不使用此系统来量测。

  配光曲线量测系统所使用的侦测器与前面所述积分球量测系统一样,可搭配亮度计或光谱辐射计进行量测,于是配光曲线仪-亮度计系统及配光曲线仪-光谱辐射计系统应运而生。LM-79特别要求使用亮度计的f''''1须小于3%。不论是哪种系统都是量测灯源各方向的光强度值,再进行积分而得出光通量值。特别的是,若须要得知各角度的颜色分布,如能源之星针对固态照明要求量测各角度的光色差值时,就一定要使用光谱辐射计,才可得知待测灯源的光色特性。

  C-γ配光曲线仪符合LM-79规范

  配光曲线仪可分为A-α、B-β、C-γ三种形式,详见图6~8。为确保量测时的光源摆放姿态即为使用时的姿态,仅有C-γ符合需求,LM-79因此规定仅可使用C-γ形式的配光曲线仪。C-γ型配光曲线仪包含移动侦测器探头及移动反光镜的类别。


 
图6 配光曲线仪A-α量测形式示意图


 
图7 配光曲线仪B-β量测形式示意图
 


 
图8 配光曲线仪C-γ量测形式示意图

  对于大型灯具,若要符合侦测位置须达最大发光尺寸直径十倍距离远的要求(LM-79第10.0节说明宽发光角光源为五倍,窄角光源须更远),碍于实际执行空间的限制,便必须使用反光镜。此时应注意镜子本身存在一轻微极化的因素,若量测发出极化光源的固态照明产品的光通量时,就会造成很大的误差,因此推荐使用不带镜子的配光曲线仪。有些配光曲线仪会在旋转背上直接装设侦测器,如此即不须透过反光镜,当然,若灯具过大则无法使用。

 
图9 配光曲线仪测试光通量示意图

  此外,也须注意配光曲线仪在环境杂散光的处理。包含灯具光源在机构件上的反光、灯具本体的反光、地面墙面反光等,都应加以评估并使用适当的架构,如在侦测期前装置光陷阱(Light Trap)避免反射杂光进入侦测器,影响量测值。

配光曲线仪架构发展久远

  藉由量测光强度分布I(θ,Φ)如图9所示,光通量可由公式(4)求得。若以亮度探头量测照度值E(θ,Φ)进行校正,光通亮的计算方式可由公式(5)计算出来。其中γ为相对于亮度探头参考平面的旋转半径。量测光强度时,γ须要有足够的长度。 

………………公式(4)

………………公式(5)


  常见几种配光曲线仪的运作架构,有中心旋转反射镜式及圆周运动反射镜式。这两种架构都已有几十年的历史了,中心旋转反射镜式其运作方式如图10,待测灯具必须在相当大的空间范围内绕着反射镜反向且同步旋转,在暗室中上部温度高及下部温度低的现象,温差有时达到2~5℃,此时对温度变化和气流敏感的灯具如固态照明灯具,极可能出现不稳定的现象,为降低气流流动对灯具的影响,在运行时须放慢速度,量测时间也就增加了。


图10 中心旋转反射镜式之配光曲线仪架构示意

  圆周运动反射镜式其运作方式如图11,待测灯仅自转不须做大范围的绕行,相对于中心旋转反射镜式的配光曲线较为稳定,但根据CIE-70的规定,入射到侦测器的主光线应被限制在2.5度内,因此须要将量测距离拉长才可满足此要求,但对于光线较弱的小型光源,如此长的量测距离,可能受限侦测器的灵敏度,不易量测。



图11 圆周运动反射镜式之配光曲线仪架构示意

  工研院量测中心目前使用配光曲线仪为图12的架构,灯具仅缓步自转,且量测时灯具为使用时的摆放姿态,稳定性佳。量测时有两种模式,一为透过双面反射镜提供大型灯具的远距离量测;另一模式不透过反射镜提供小型灯具如嵌灯、E27灯等的近距离(约1公尺)的量测。


 
图12 工研院量测中心之配光曲线仪及其量测光源路径示意
 

  配光曲线仪的校正

  使用配光曲线仪进行光强度分布的测试,须使用照度或光强度标准灯进行国际标准追溯。若量测全光通量则须使用全光通量标准灯进行标准追溯,原则上标准灯的光型分布建议与待测灯源的光型相似。

  LM-79特别说明使用配光曲线仪量得的光强度分布数据,须依照IES LM-63规范定义的格式,形成IES电子文件,以方便后续于照度分度上的模拟计算使用。

  发光效率ηv的计算如下列公式(6)所述,为待测固态照明产品的总光通量ΦTEST除以总消耗功率PTEST,此指标是用以评估固态照明电光效能转换的重要指标。

………………公式(6)

固态照明在颜色特性的量测上包含色度坐标、相对色温、演色性,对于固态照明其颜色特性在不同的空间角度可能是不同的,LM-79规范在第12.1至12.2节当中进行定义。

  第12.1节为使用积分球-光谱辐射计系统进行分光辐射通量的量测,再计算出颜色特性,此时量得的固态照明颜色特性为空间分布的平均表现。

  第12.2节为使用前述配光曲线仪的机构方式,搭配光谱辐射计或是色度计进行空间颜色特性分布量测。这个方式适用于无法使用积分球进行量测,如大型灯具。重要的是,此方法可量得固态照明光源的空间颜色差异。若要得到空间平均的颜色特性,就将空间中各点的颜色数据进行平均即可得到。

  在量测θ=0°和90°(或更多的θ角)的色度坐标和光强度时,首先在每个θ角上取平均,表示为x(θi)、y(θi)以及I(θi),这里的θi=0°、10°、20°等直到180°。然后平均色度坐标xa由下列加权平均式子算出,量测示意图如图13。


图13 图中为使用配光曲线仪量测固态照明颜色特性示意图,该灯具为仅朝下半面发光之形式。

 ………………公式(7)

 
  平均色度坐标ya 也是使用相同的算法。此计算方式是近似算法但对于实际应用已算是足够正确。严格说来,若要很精确的进行颜色特性的空间积分须要经由三刺激值计算X、Y、Z。

  在使用光谱辐射计进行颜色特性的量测时,LM-79定义光谱辐射计的量测波长范围至少为380~780奈米,这是可见光的波长范围,扫描间隔为5奈米或是更小的间距,如此才可确保量测的精确性。

  在两个空间垂直平面(ψ=0o,ψ=90o)量测,空间平均色度坐标是由前述公式(7)取得。LM-79中所定义的固态照明灯具空间色差Δu''''v''''为从计算空间平均色度坐标的所有量测点中,对空间平均色度坐标的最大差异(即在CIE(u''''v'''')坐标图中,两点间最大距离)所决定的。

  量测方法一致性可推动产业发展

  固态照明的发展目前正如火如荼的进行,为使固态照明取代传统照明能顺利推动,美国能源之星正积极展开相关计划,期望藉由对固态产品特性量测方式定义的一致性,使产品能有一致的手法来评估,而得以分出固态照明产品的优劣,使此产业有正向推动力。国内业者要推动固态照明产业除了国内内需市场、大陆市场,另一部分应是欧美市场。而了解能源之星对固态照明的验证量测方法并进行测试验证,将有助于质量的提升。

关键字:LED照明  测量标准  检测细节 引用地址:图文解析能源之星LED照明测量标准及检测细节

上一篇:分析振动检测技术在日常设备保养中的应用与实现
下一篇:RS多端口毫米波测量用变频模块应用

推荐阅读最新更新时间:2024-03-30 23:23

如何降低LED照明开关电源待机功耗
与普通光源相比, LED 灯具有效率高、环保和使用寿命长的特性,因而它们正在成为降低室内和外部照明能耗的主选解决方案。设计用于照明供电的开关电源也应该具有高效率,以便顺应LED灯的节能特性。除了在正常工作过程中具有高功率转换效率之外,开关电源的待机功耗也成为LED业界的普遍关注焦点。在不远的将来,待机功耗有望调整到1W甚至300mW以下。然而,在 LED照明 应用中,专用于待机电源的辅助功率级并不适用,主要是因为照明应用在工作期间不存在待机条件。但是,为灯泡供电的开关电源即便在没有灯或者灯已损坏的条件下仍然与电网连接并吸取能量。这是在照明应用中关心待机功率水平的主要原因。   在空的办公楼中,待机功耗特性不良的照明系统是不环保的,
[电源管理]
如何降低<font color='red'>LED照明</font>开关电源待机功耗
湿天然气测量技术及国际标准化研究进展
典型的湿气是未经处理的井口气或经部分处理的天然气。湿天然气的测量目的是在一定准确度范围内获得气体流量、烃流量和含水率等。湿天然气测量主要采用单相流量计、湿气流量计、多相流流量计计量方法,技术内容包括流量测量原理、修正计算模型、取样分析等。近年来,美国科罗拉多工程实验站CEESI、英国国家工程实验室NEL等国际知名的研究机构和Solartron等流量计生产厂商进行了大量湿气测量技术和测量标准的研究;国内的中国石油大学、浙江大学、海默公司等也开展了大量的湿气测量技术研究。目前,国际标准化组织ISO正在编制湿天然气测量技术报告,旨在推动和规范湿天然气测量技术的发展。 1 湿天然气测量技术 (1)湿天然气量化定义。国际上湿气的量化定义方
[测试测量]
湿天然气<font color='red'>测量</font>技术及国际<font color='red'>标准</font>化研究进展
基于升降压转换器的LED照明驱动器设计
虽然在输出电压可能高于也可能低于输入电压时,峰值电流模式控制的非连续升降压转换器是LED驱动器的一个不错选择。但是,采用这种升降压转换器来设计驱动器时,LED电压的变化会改变LED电流,LED开路将导致输出端产生过高的电压,从而损坏转换器。本文将详细讨论这种用于LED的转换器设计,并给出多种克服其固有缺点的方法。   发光二极管(LED)的应用已有很多年,随着最新技术的进步,它们正逐渐成为照明市场中强有力的竞争者。新的高亮度LED具有很长的寿命(约10万小时)和很高的效率(约30流明/瓦)。过去三十多年来,LED的光输出亮度每l8~24个月便会翻一番,而且这种增长势头还会持续下去,这种趋势称为Haitz定律,相当于LED的摩尔定律
[应用]
飞乐三安高速增长 2016LED照明产业趋势分析
2017年4月以来,LED上市公司捷报频传,2016年飞乐音响以71.8亿元的营业收入高居主营LED上市公司的榜首,较2015年同期增长了41.53%。三安光电2016年的营业收入增长近3成,总额达到62.7亿元,利润总额为26.2亿元,同比增长24.58%。LED封装龙头企业木林森2016年营业收入为55.2亿元,同比增长超四成。利润总额达到5.8亿,同比增长92.16%,表现十分抢眼。快随eeworld网LED小编来详细了解下吧。 在龙头大企业的带动下,LED产业呈现了快速增长态势。 LED通用照明产值增长31.5%,汽车等新兴领域增长三成 据CSA的最新统计显示,2016年,我国半导体整体产值达到5216亿元,同比增长22.
[电源管理]
用LLC半桥式控制器UCC25710实现LED照明
一、 UCC25710:LED 照明用LLC 半桥式控制器快速入门指南   TI UCC25710是一款用于实现多串LED背光源应用的准确控制的LLC半桥式控制器。它专为多变压器、多串LED架构而优化。利用该控制器及架构可在多个LED串中实现绝佳的LED电流匹配。与现有的LED背光源解决方案相比,这种多变压器架构可依靠AC输入向LED负载提供最高的总效率。LLC控制器的功能包括一个具有可编程F的压控振荡器(VCO)最小值和F最大值、具有500ns固定死区时间的半桥式栅极驱动器和一个GM电流放大器。LLC功率输送由控制器的VCO频率来调整。该VCO具有一个准确且可编程的频率范围。在超低的功率电平下,VCO频率从F变最大值至零,以最
[模拟电子]
用LLC半桥式控制器UCC25710实现<font color='red'>LED照明</font>
政策补助LED照明 为受惠厂商带来机遇
 国内将以10~22亿元人民币对LED进行财政补助,LED照明得标厂商出炉,虽不见台厂得标,但间接受惠的LED磊晶、封装厂不少,包括晶电、璨圆、新世纪、隆达、东贝、真明丽为间接受惠者,且已自本季开始出货,明年贡献将较为显著。 2012及2013财政补助年度LED照明最新名单出炉,共计76家得标,且几乎是国内厂商得标,海外企业仅全球照明龙头飞利浦一家,参与标案台厂虽落马,但得标厂商不乏台湾LED磊晶、封装厂客户。 国家发改委为提升LED照明财政补贴供货商水平,今年7月决定重新招标,将投标规定新设禁止联合投标,以利在第1关即进行汰弱留强选择,且因为开标时间已临近今年第4季,所以把“2012年半导体照明产品财政补贴”,改为跨年度
[电源管理]
高效率的LED照明电源设计
标准电灯正在经历一场革命。出于保护能源和应对全球气候变暖的考虑,美国一些州和其它一些国家开始禁止使用低能效的白炽灯泡。各种新技术正纷纷被用于替换白炽灯泡,其中紧凑型真空荧光灯(CFL)是主要替代方案。尽管这种CFL灯的功耗仅为白炽灯的20%,但却含有有毒物质汞。相比之下,LED灯可以提供更高效和更环保的解决方案。 led最初的商业应用出现在上世纪七十年代,但因其光输出极低,应用范围也仅限于指示灯和计算器显示屏等领域。如今,能够产生白光的高功率LED在效率方面不断得以提升,价格也在逐年下降,因此它已成为主流照明应用值得考虑的选择之一。预计随着LED技术的发展,到2012年其发光效率将达到150流明/瓦,1000流明的成
[电源管理]
高效率的<font color='red'>LED照明</font>电源设计
照明用LED驱动电源设计详细图解
   LED 的排列方式及LED 光源的规范决定着基本的 驱动 器要求。LED 驱动器的主要功能就是在一定的工作条件范围下限制流过LED 的电流, 而无论输入及输出电压如何变化。最常用的是采用变压器来进行电气隔离。文中论述了LED 照明设计需要考虑的因素。    一、 LED驱动 器通用要求   驱动LED 面临着不少挑战,如正向电压会随着温度、电流的变化而变化,而不同个体、不同批次、不同供应商的LED 正向电压也会有差异;另外,LED 的“色点”也会随着电流及温度的变化而漂移。   另外,应用中通常会使用多颗LED,这就涉及到多颗LED 的排列方式问题。各种排列方式中, 首选驱动串联的单串LED, 因为这种方式不论正
[电源管理]
照明用LED驱动电源设计详细图解
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved