电流测量中引起误差电流的原因解析

发布者:美梦小狮子最新更新时间:2016-09-12 来源: dzsc关键字:电流测量  误差电流 手机看文章 扫描二维码
随时随地手机看文章
  测试系统中任何额外产生的电流都会加到被测电流中去而引起误差。这种电流可以在内部产生,如仪器的输入偏置电流;也可以从外部而来,如来自绝缘子和电缆。以下将讨论各种电流产生原因。

  1. 偏置电流

  偏置电流可以在仪器内部产生(输入偏置电流),也可以由外部电路产生(外部偏置电流)。

  ① 输入偏置电流

  当输入端开路时,理想安培计的读数应当为零。然而,实际的安培计在输入端开路时的确有一些小的电流。这种电流称为输入偏置电流,是由有源器件的偏置电流以及流过仪器内部的绝缘子的泄漏电流所引起的。皮安计、静电计和SMU中产生的偏置电流在仪器的技术指标中给出。输入偏置电流叠加到被测电流上,所以仪表测量的是两个电流之和: IM = IS + IOFFSET

  输入偏置电流可以通过盖上(capping)输入连接器并选择最低的电流量程来决定。用大约5分钟的时间使仪器达到稳定,然后读取读数。该读数应当在仪器的技术指标之内。

  从测量结果中减去输入偏置电流的另一种方法是使用安培计的相对(REL或ZERO)功能。在开路的情况下使读数达到稳定,然后打开REL功能。建立REL值以后,以后的读数就都是实际输入值和该REL值之差。

  ②外部偏置电流

  外部偏置电流可以由与安培计相连的绝缘体上的离子沾污产生。这种偏置电流也可以由摩擦电效应和压电效应等原因在外部产生。如图2- 18所示,外部偏置电流也加到源电流上,仪表显示的也是这二者之和。

  外部偏置电流可以用仪器的电流抑制功能(如果有此功能的话)来消除,也可以用一个比较稳定、安静的外部电流源来消除,如图2-19所示。采用这种方法时,仪表测量的电流为: IM = IS + IOFFSET - ISUPPRESS

  如果IOFFSET和ISUPPRESS大小相等、极性相反,则: IM = IS

  采用外部电流源的好处是IOFFSET可以等于甚至大于仪器满量程之值,只要IOFFSET - ISUPPRESS 比较小即可。

  2.摩擦电效应

  摩擦电电流是由导体和绝缘体之间摩擦产生的电荷生成的。这时,摩擦引起自由电子脱离导体,产生电荷不平衡,从而产生电流。

  “低噪声”电缆能大大降低这种效应。这种电缆通常使用聚乙烯的内层绝缘层,并在外层屏蔽的下面涂敷以石墨。石墨可以起润滑作用,并形成导电的等电位圆柱体,以使电荷平衡并尽量降低由电缆运动的摩擦效应所产生的电荷。然而,在受到振动或伸缩作用时,即使是低噪声电缆也会产生一些噪声。所以,所有的连接都要尽量地短,避免温度变化的影响(温度变化会产生热膨胀力),并且最好将电缆固定在不振动的表面,如墙壁、桌面或其它牢固的结构上。

  有多种方法可以解决运动和振动的问题:

  * 消除与振动源的机械耦合。马达、泵和其它的电机设备都是常见的振动源。

  * 使测试夹具稳定。牢靠地固定或绑扎电子元件、导线和电缆。屏蔽应当牢靠、完善。

  摩擦电效应也可能在其它绝缘体和导体互相接触摩擦时发生。所以在构建测试夹具和进行弱电流及高阻抗连接时,尽量减少绝缘体之间及导体之间的接触也是很重要的。

  3.压电效应和储存电荷效应

  某些晶体材料用作绝缘端子和连结件时,若向其施加机械应力,就会产生压电电流。在某些塑料中,电荷的储存使该材料的性质类似于压电材料。压电绝缘体的端子示于图1。



  为了尽量减小这种效应产生的电流,重要之点在于消除绝缘子上的机械应力并使用压电效应和储存电荷效应最小的绝缘材料。

  这种效应和金属板与端子之间的电容变化无关。由于电荷的运动产生了电流。

  在实际工作中,区分储存电荷效应(在绝缘体中)和压电效应可能是相当困难的。无论对哪种现象,选择很好的绝缘材料,并使连接结构尽可能地牢固都是很重要的。

  4.污染和湿度

  当离子化学物质在电路板上的两个导体之间生成弱的化学电池时,电化学效应就会产生误差电流。例如,常用的环氧树脂印制电路板,如果没有彻底地清洗掉腐蚀加工用的溶液、焊剂或其它的污染物,就能在两个导体之间产生几个纳安的电流(见图2)

  高湿度和离子污染能够大大降低绝缘电阻。在发生结露或水吸收的情况时,就会出现高湿度,而离子污染则可能由人体的油脂、盐分和焊剂等产生。

  这些污染的主要结果是降低绝缘电阻。在高湿度和离子污染的双重作用下,还能形成导电通路,甚至可以形成具有高串联电阻的化学电池。这种情况下形成的电池能够在很长的时期内输出皮安或纳安级的电流。

  为避免污染和湿度的影响,应当选择抗吸水的绝缘材料,并将湿度保持在适当的水平。而且,还要确保所有的绝缘体清洁、不受污染。

  如果绝缘体受到污染,可使用清洁的溶剂,如甲醇来清洗所有的互连电路。重要之点是在污染物溶解到溶剂中以后,将其完全冲净,使之不再沉积下来。清洗时只能使用纯净的溶剂;低等级的溶剂可能含有污染物,清洗后会留下电化学薄膜。

  5.介电吸收

  在绝缘体上施加电压时,由于各种极性分子以不同的速率运动,使得绝缘体内部的正、负电荷发生极化,这时绝缘体内就会发生介电吸收现象。当撤去电压时,这些分离的电荷在重新组合时会在与绝缘体相连的电路中产生衰减的电流。

  为了尽量减小介电吸收对电流测量的影响,避免向进行灵敏电流测量时所使用的绝缘体施加大于几伏的电压。在实际工作无法避免这种情况时,可能需要经过几分钟、有时甚至几个小时,介电吸收引起的电流才会消散。

关键字:电流测量  误差电流 引用地址:电流测量中引起误差电流的原因解析

上一篇:高速背板互连信号完整性高级测量技术
下一篇:低电压测量中常见的误差来源分析

推荐阅读最新更新时间:2024-03-30 23:23

使用4200A-SCS参数分析仪测量1/f电流噪声
电子器件本身就有各种不同的噪声源,包括热噪声、散粒噪声、白(宽带)噪声和1/f (闪烁效应)噪声。1/f 噪声是低频电子噪声,其中电流 (ISD) 或功率 (PSD) 频谱密度与频率成反比。许多元器件类型都会有 1/f 噪声,包括半导体器件、某些类型的电阻器、石墨烯之类的 2D 材料,甚至包括化学电池。为确定一种器件的 1/f 噪声,我们通常要测量电流相对于时间的关系,然后把数据转换到频域中。快速傅立叶变换 (FFT) 是把时域数据转换成频域数据的一种流行方法。 在测量设置中,噪声来自不同的来源,其中之一是测量仪器本身。为提取被测器件 (DUT) 的噪声特点,仪器噪声必须小于 DUT 噪声。 源测量单元 (SMU) 和脉冲
[测试测量]
使用4200A-SCS参数分析仪<font color='red'>测量</font>1/f<font color='red'>电流</font>噪声
高性能电机和伺服驱动器控制优化Σ-Δ调制电流测量方案
在高性能电机和伺服驱动器中,基于隔离式sigma-delta(Σ-Δ)的模数转换器(ADC)已成为首选的相电流测量方法。这些转换器以其强大的电流隔离和卓越的测量性能而闻名。随着新一代ADC的推出,其性能也在不断提高,但是,要充分利用最新的ADC的功能,就需要对其他的电机驱动器进行相应的设计。 简介 电机驱动器制造商不断提高其产品的性能和鲁棒性。一些改进是通过采用更先进的控制算法和更高的计算能力实现的。其他改进则通过最小化反馈电路中的非理想效应来实现,比如延迟、倾斜和温度漂移。1 就电机控制算法的反馈而言,最关键的部分是相电流的测量。随着控制性能提高,系统对时序精度、偏移/增益误差、多反馈通道的同步等非理想效应越来越敏感。多年来,半
[嵌入式]
高性能电机和伺服驱动器控制优化Σ-Δ调制<font color='red'>电流</font><font color='red'>测量</font>方案
如何测量蓄电池的充电电流
针对整个朝阳产业的商机,为了抓住时机,抢占更多的市场,创造更多的效益,许多灯具公司都在争相开发各种道路灯具来满足用户的需要,甚至一些原来不生产照明产品的企业也纷纷上马,但由于照明知识的感悟层次差异,造成了现在的半导体灯具产品混乱局面,一些企业产品还走入了误区,给终端客户带来了很大的负面影响。   LED与传统的照明灯不同,它具有点光源、高亮度、窄光束输出等特点。因此对LED新型灯具的设计人员将提出更高的要求。做LED路灯首先要考虑把有限的光通量充分的利用到有效的照射范围。路灯要求是路面照明效果,超出路面的空地不是路灯照明的方式。因此,有效的控制光线的分布范围,使发光管发出的光成为一个长条形光带沿路面方向铺展,同时也要兼顾眩光的产生,
[电源管理]
模拟乘法器提高高边电流检测的测量精度
  将模拟乘法器和高边电流检测放大器相结合,能够在笔记本电脑或其他便携仪器中实现电池充、放电电流的测量。本文讨论将ADC的基准电压加到模拟乘法器的一个输入端,以提高电流测量精度的方法。   对可靠性和精确性要求非常高的应用中大量使用了高边电流检测放大器。笔记本电脑中,它被用来监测电池的充、放电电流,也可以用来监测USB口和其他电压的电流。为了控制系统发热和电源损耗,要求降低这些电压的输出功率。在便携式消费类产品中,高边电流检测放大器用来监测锂电池的充、放电电流。汽车应用中,这样的放大器不仅可以监测电池电流,也可以用来进行电机控制和GPS天线检测。在通信基站中,这样的放大器也被用来监测功率放大器的电流。   很多应用中,高边电流
[测试测量]
模拟乘法器提高高边<font color='red'>电流</font>检测的<font color='red'>测量</font>精度
适合小型风力发电系统电流和电压测量的微型化
适合小型风力发电系统电流和电压测量的微型化隔离放大器 摘要 搭配分流电阻,隔离放大器在具有高开关噪声的功率变换器中亦可提供精确的电流测量;当和电阻分压电路配套使用时,还可以作为精确的电压传感器。这些电流和电压信息可以提供给控制器进行计算和实施有效控制,帮助小型风力发电系统取得最佳的转换效率。具备高共模噪声抑制比、高隔离电压、内置安全绝缘以及超小尺寸等特性,微型化隔离放大器为小型风力发电涡轮机提供了一个理想的电流/电压检测方案。 介绍 作为最具前景的替代能源之一,风力发电不受金融危机和经济衰退的影响,预估会在未来5年以每年22.4%的速度持续增长 。大型风力发电场目前也已经开始扩展到离岸的深水区域,例如爱尔兰海的25M
[模拟电子]
适合小型风力发电系统<font color='red'>电流</font>和电压<font color='red'>测量</font>的微型化
电流传播速度的首次测量
理论计算和实验数据都告诉我们,光和电磁波在真空中的传播速度C=3X108米/秒,这一点已经被举世所公认。由于电流是电磁波的宿主载体,很多人自然很关心电流在导线中的传播速度,遗憾的是这方面既没有理论方面的预测,也没有实际测量结果的报道。如果从网上搜索光速的测量历史,几乎每个人都可以津津乐道地讲一大堆,但是如果问及电流的传播速度,多数人都会不加思索地回答说它接近于光速,或者说电流的传播速度就等于电磁波的传播速度,事实果真是这样的吗?就像光源与光线的传播速度没有任何关系一样,电流的传播波速凭什么必须要和它自己所发射的电磁波的传播速度一致呢? 我非常奇怪的是,既然这么多人都相信电流的传播速度等于电磁波的传播速度,为什么就没有人亲自动手测
[测试测量]
<font color='red'>电流</font>传播速度的首次<font color='red'>测量</font>
Sendyne研发高精度电子元件电流测量模块
    美国Sendyne公司近日开发出一款能够精确测量汽车电子部件电流、电压和温度的交钥匙模块(turnkey module)。这款SFP100EVB模块在汽车应用中正常工作温度范围为-40 °C -125 °C。通过100微欧电阻并联的布局可以测量双直流电的电流、电压和温度的数值。该模块采用61微安平均工作电流,该模块可以对3毫安到513安电流强度范围内的电子器件电流进行连续不断的测量。     该模块适用于汽车中广泛温度范围内需要精确测量的部件或系统,例如汽车中的电池管理系统,其他的应用包括电网储存、光电部署、驾驶控制、精确电流管理等。     在10 °C - 50 °C范围内,该模块测量汽车电子系统电流和电压精确
[汽车电子]
怎么使用万用表测量电路电压、电流、电阻、二极管、三极管、场效应管
一、电压的测量 1、直流电压的测量,如电池、随身听电源等。首先将黑表笔插进“com”孔,红表笔插进“V Ω ”。把旋钮选到比估计值大的量程(注意:表盘上的数值均为最大量程,“V-”表示直流电压档,“V~”表示交流电压档,“A”是电流档),接着把表笔接电源或电池两端;保持接触稳定。数值可以直接从显示屏上读取,若显示为“1.”,则表明量程太小,那么就要加大量程后再测量。如果在数值左边出现“-”,则表明表笔极性与实际电源极性相反,此时红表笔接的是负极。 2、交流电压的测量。表笔插孔与直流电压的测量一样,不过应该将旋钮打到交流档“V~”处所需的量程即可。交流电压无正负之分,测量方法跟前面相同。无论测交流还是直流电压,都要注意人身安全,不
[测试测量]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved