想要提升自己使用示波器的技能,请阅读此文

发布者:千变万化最新更新时间:2016-09-29 来源: ednchina关键字:示波器  使用方法 手机看文章 扫描二维码
随时随地手机看文章
       我希望与您分享从我多年的出差经历中与 1000 多名示波器用户的交流中所获得的一点心得。如果您想要提升自己使用示波器技能,阅读此文将会增进您对示波器的了解,而不会像我访问的很多示波器用户一样对示波器知之甚少。我们不是要对他们进行评判,他们当时已经根据自己的知识水平做到了最好,每个人都会犯错或可以做得更好——我也不例外。每当我向这些用户指出他们的错误和解决办法,他们的反应通常都一样——“天呐,太对了,”一幅恍然大悟的表情。

        我所说的这些用户均犯了同一个错误。为了完成测量任务,他们花费了大量宝贵的时间和金钱选购最好的示波器,再配备上高质量的探头。有时,他们使用的是示波器自带的优质无源探头,但有时,他们也会花大价钱购置华而不实的有源探头(明智之举是升级到有源探头,有关这个问题的详细说明请见另一篇已发布的博文)。接下来才是问题的关键,他们将一大串附件晃晃悠悠地连接到探头末端。或许这看上去无关紧要,例如连接非常方便的长接地线,或者是外观非常实用的红色长输入线――使探头可以很容易地连接到抓取器,抓取器再夹在电路板上的部件上。但最后的结果都是相同的,屏幕上的信号“看起来很糟糕”或他们正在测试的设备开始表现异常。这时,他们常常会拽住我说,“嘿,你们设计的这款探头,现在不能正常工作了。”

最薄弱的环节

33.jpg

         这些用户遇到的情况正是我所说的“最薄弱的环节”。典型的示波器测量有三个环节——示波器、探头以及到被测件的物理连接。您可能花大钱购买了最好的示波器和探头,但是为了更容易地连接到被测件,您可能在探头一端使用了极长的引线,这样测量系统的性能就会受到该引线性能的限制。连接附件是最薄弱的环节。它们将会限制测量带宽,并会对被测件增加过大的负载效应。

         我们可以把这些过长的连接附件当成是与探头串联的电感器。由于电感器的阻抗增加与频率成正比,如果它们连接到探头的信号引脚,它们就会限制通过探头的信号的带宽。此外,由于长连接附件与探头输入之间存在阻抗失配,沿连接线前进的信号将会形成反射,并显示在示波器上。如果那个特别长的接地引线连接至探头,也会出现类似结果。受流经电缆屏蔽层的接地回路电流的影响,长接地会生成更高阻抗的路径。这也会限制探头的带宽。此外,因长接地引线的感应而产生的阻抗可能也会在目标接地与探针接地点之间形成电势差,从而造成测量误差和较差的共模抑制。如果这还不算糟糕,那么这些特别长的连接附件还可能起到天线的作用,从周围环境中接收噪声,并将噪声耦合到您的测量中。最后就是负载。这些与电路接触的长引线现在已成为您电路的一部分,它们的寄生电容和电感会改变电路的特性。我们将此称为探头负载。

越短越好

        在这点上,我也常常听到这样的问题“如果那些连接附件‘有害无益’,您为何还要在探头上配备呢?”我们配备这些附件是为了提供方便。我们用它们来进行定性测量,例如“这就是时钟切换吗?”,那就是“总线上的数据吗”,“是否在 5V 以上”。它们可以非常方便地环绕在电路周围,快速检查功能。如果您想进行定量测量,例如测量上升时间、过冲、噪声电平等,我们建议您拆除这些方便的附件,尽量使用最短连接。也就是穿孔线,越短越好。

11.jpg

           请看下面的示例。我拿出自己精选的 2 GHz 有源探头,并采用三种不同的测量配置:使用长线连接到抓取器、仅用长线、使用短输入引脚和接地连接。注意,随着探头前端附件长度的缩短,带宽逐渐增加。顺便说一句,为了让您更容易进行测量,我们在产品手册中公布了这些带宽限制。

 

 

 

22.jpg     

       注意,随着附件连接长度的缩短,探头负载(探头的实际存在会改变电路的功能方式)将会如何降低。在本例中,原始电路会产生上升时间为 1.1 ns 的上升沿(绿色迹线)。使用长线和抓取器将探头连接至电路会增加电路负载,上升时间变为 1.7 ns。当我移除抓取器,仅用长线进行连接时,上升时间开始好转,变为 1.5 ns,不过您仍能看到连接附件对电路的影响。最后,我移除所有长线,直接在探头上使用最短连接,电路的上升时间恢复至 1.1 ns。

希望本文会对您有所帮助

        如果以前您一直在错误地使用长连接附件进行重要测量,不要感到沮丧。您在一个好公司,很多示波器用户都犯过这样的错误,说实话,我也犯过。只要记住,使用这些长的、方便的连接附件进行快速查看没问题;但如果信号表现异常,您得到的结果不符合预期,那么最好拆掉它们,尽量换用最短的连接。越短越好。

 

图中文字中英对照

Beware of Weakest Link

Connection Bandwidth

Scope Bandwidth

Probe Bandwidth

Connection Bandwidth

Best: 2GHz

Better: 1GHz

Good: 500MHz

Shortest

Shorter

Short

Example: N2796A 2 GHz Active Probe. Accessory Data in Users Guide.

Connection Loading

Best: 1.1ns

Good: 1.1ns

Better: 1.5ns

Original Signal 1.1ns

谨防最薄弱环节

连接带宽

示波器带宽

探头带宽

连接带宽

最佳:2GHz:

较好:1GHz

好:500MHz

最短

较短

实例:N2796A 2 GHz 有源探头。附件数据参见用户指南

连接负载

最佳:1.1ns

好:1.1ns

较好:1.5ns

原始信号:1.1ns

 

关键字:示波器  使用方法 引用地址:想要提升自己使用示波器的技能,请阅读此文

上一篇:什么是示波器的系统带宽,如何找到示波器和探头的带宽?
下一篇:让您的示波器测量质量提升 1000 倍的绝招

推荐阅读最新更新时间:2024-03-30 23:25

磁芯电流探头降额功率的主要原因是什么?
磁芯电流探头可以测试直流电和交流电,并且测试直流电和高频交流电信号的方法不同。霍尔传感器用于测量直流和低频交流电,而电流互感器用于测量高频交流电。交流电在电流互感器的铁芯中产生磁场,然后电流在第二个绕组电路中汲取并馈入示波器。如下所示: 交直流混合探头的结构图如下: 在降额曲线中,只能在低于10K的频率下测试15Arms的最大连续电流。 磁芯电流探头降额功率的主要原因是,当测量高频和高振幅电流时,探针本身会发热。这些热量甚至可能导致探头融化并损坏。自热的主要原因有两个: 1、高频电流产生交变磁场。磁场在导体上感应出涡流,频率越高,涡电流越大,涡流会导致导体发热和涡流损耗。 2、在测量高频电流时,磁芯电流探头使用变压器方
[测试测量]
磁芯电流探头降额功率的主要原因是什么?
泰克示波器Spectrum View 功能——频域分析利器
示波器和频谱仪都是电子测试测量中必不可少的测试设备,分别用于观察信号的时域波形和频谱。时域波形是信号最原始的信息,而频谱的引入主要是为了便于分析信号,比如谐波和杂散的测试,从时域上很难观察到,但是从频域就可以非常明了的区分开。 示波器除了具有采集信号的基本功能,还可以对信号进行 FFT 变换得到频谱,从而兼具频谱分析功能。几乎所有的中高端示波器均支持 FFT 频谱分析。本文安泰测试将要介绍的是泰克示波器的频谱分析功能——Spectrum View,是一款功能强大的频谱分析工具,它的引入开启了全新的时频域信号分析。 结合了 TEK049 ASIC 创新平台及 TEK061 低噪声前端放大芯片的频谱模式 -- Spectrum
[测试测量]
泰克<font color='red'>示波器</font>Spectrum View 功能——频域分析利器
专家告诉你锂电池的正确使用方法
  近日发现一篇与电池有关的文章,特摘下来与朋友们分享。虽然文章中所说的主要是手机电池,但现在数码相机所使用的也多是锂离子电池,与手机电池原理一样。所以,看看这篇文章还是有很大的现实意义的。   本文共分11个疑问和相应的解答。   1.认识记忆效应   2.电池需要激活吗   3.前三次要充12小时吗   4.充电电池有最佳状态吗   5.真的是充电电流越大,充电越快吗   6.直充标的输出电流就等于充电电流吗   7.循环充放电一次就是少一次寿命吗   8.电池容量越高越好吗   9.充饱的电池进行存储好吗   10.座充的绿灯亮了以后在多充一个小时有用吗   11.座充充电比直充饱吗    1.认识记忆效应(主要谈的是镍镉
[电源管理]
专家告诉你锂电池的正确<font color='red'>使用方法</font>
涡轮流量计逻辑分析仪与示波器的不同点
  在电子测试领域,示波器是最早的测试设备,涡轮流量计起源于雷达扫描原理,对信号波形的采集和再现,源于传统的模拟信号和模拟电路的测试基础。随着数字技术发展,对数字信号测试越来越重要,最早的数字信号测试,往往借着于示波器,后来出现了定时分析仪和状态分析仪,从定时和状态的角度分析和测试多路数字信号。由于当时的定时分析仪和状态分析仪价格昂贵,两者在市场上的概念很好,但影响不大,测试范围很窄。随着数字测试技术发展,融合数字定时和状态分析的逻辑分析仪应用而生。   从诞生开始,逻辑分析仪往往给人三种印象:   ①价格昂贵,操作麻烦;   ②对使用者的要求较高;   ③与示波器功能大同小异,只是多增加了通道和部分时序功能。实质上现在逻辑分
[测试测量]
LOTO 示波器软件功能 8位~13位垂直分辨率讲解
本文讲解LOTO示波器的上位机垂直分辨率(ADC)可以从到8位一直可以到13位,但是它硬件上是八位ADC的,那是怎么做到垂直分辨率能达到13位呢?这中间是一个变化的过程,它并不是8位和13位两个挡位,而是中间有9, 9.1, … 到13这样的变化,是通过牺牲采样率,然后来弥补垂直分辨率。 图1. 界面展示 如图1所示,现在时间挡位是1毫秒挡位,可以在示波器右上栏看到此时的垂直分辨率是8bit,它现在采用率是781 Khz,右侧下部分是模式选择,现在是峰峰值模式(Peak-detect Mode),Normal是常规模式或者叫实时模式,Hight-Res是高分辨率模式。在常规模式下,它的零电压的噪声线的粗细程度适中,然后我们
[测试测量]
LOTO <font color='red'>示波器</font>软件功能 8位~13位垂直分辨率讲解
是德科技推出高性能PAM4误码仪及100GHz采样示波器模块 ​
是德科技在2017年Design con展示针对 400G/PAM-4 设计的最新测试和测量技术,包括高度综合的 M8040A 64 Gbaud 高性能比特误码率测试仪、新数据分析软件功能,100GHz带宽的采样示波器模块,现这一系列产品已正式推出。 M8040A高性能PAM4误码仪 其中Keysight M8040A 是一款高度综合的比特误码率测试仪,适用于物理层表征和一致性测试它支持 PAM-4 和 NRZ 信号,数据速率高达 64 GBaud(相当于 128 Gb/s),覆盖 200 和 400 GbE 标准的所有特性。M8040A 比特误码率测试仪提供真正的误码分析、可重复的精确结果,从而可以优化您的 400GbE 设备的
[测试测量]
通用示波器自动测试系统的设计
一、前言 随着电子科学技术的发展,示波器已成为电子技术工作者不可缺少的重要工具之一。由于受到元器件的漂移、老化等多种因素的影响,若要保证示波器在使用时的准确性,就必须对其进行定期检定。以往传统的检定方法全是靠手工操作,由于检测的范围广、功能多,因此,在检定时常常忙得不可开交,不仅劳动强度大,工作效率低,而且检定的数据也不易管理。为此,对示波器进行自动化测试,是当前迫在眉睫,势在必行的一项重要工作。 要实现示波器检定的自动化,就必须解决接口问题,使仪器控制器和仪器之间能够相互通信。为此,在本系统中,采用了在微机的I/O通道中插入一块GPIB接口板(即IEEE-488接口板),来实现计算机和示波器校准仪之间的通信(包括程控命令,测
[测试测量]
通用<font color='red'>示波器</font>自动测试系统的设计
使用DPO示波器测量开关电源中的功耗
  电源需求的变化推动了开关电源系统的体系结构变化,能够测量和分析下一代开关式电源 (SMPS)的功耗至关重要。支持高得多的数据速度及千兆赫级处理器的新型电源,需要更大的电流和更低的电压,在效率、功率密度、可靠性和成本方面给电源设计人员带来了新的压力。为满足这些需求,设计人员正在采用新的结构,其中包括同步整流器、有源功率系数校正和更高的开关频率。这些技术也带来了新的挑战,如开关设备上的高功耗、温度上升和EMI/EMC过高等影响。   了解这些影响的一个关键参数是在开关过程中发生的功率损耗。在从“off”状态转换到“on”状态的过程中,电源会发生更高的功率损耗。而开关设备处于“on”或“off”状态时的功率损耗较低,因为流过设备的电
[电源管理]
使用DPO<font color='red'>示波器</font>测量开关电源中的功耗
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved