低功耗待测器件实现高精度低电流测量两种方式

发布者:bin0990最新更新时间:2017-01-20 来源: eefocus关键字:低功耗  待测器件  低电流测量  两种方式 手机看文章 扫描二维码
随时随地手机看文章

  概述

  由于当今的重点是绿色出行和打造移动设备和物联网设备,因此实现集成电路和电子组件功耗最小化已成为器件制造商的梦想。功耗最低意味着实现所有集成电路和电子组件的电流消耗最低。为了对这些部件进行特性分析,必须测量器电流消耗。过去,功耗并不是主要问题,测量通过器件的电流非常简单,因为电流电平相对较高,为毫安甚至安培级,利用标准多用表即可测量。当今器件工作电流低至微安级甚至更低,因此需要更复杂设备进行测量。

  本文探讨了对低功耗待测器件(DUT)进行低电流测量的两种不同方法:一是将电源、高精度数字多用表及待测器件进行串联,二是使用高精度测量电源。应用笔记详细介绍了怎样配置2280S系列高进度测量直流电源,实现高精度低电流测量。

  将电源与数字多用表进行串联

  测量流经器件电流的一个方法是将数字多用表与电路串联,并利用它测量电流。使用6位半的高质量数字多用表,可以对毫安级电流电平进行高精度测量。图1给出这个方法的测试设置。

使用电源与数字多用表串联来测量电流

  图1. 使用电源与数字多用表串联来测量电流

  虽然这个方法能够对通过器件的电流进行非常准确的测量,但由于特性分析期间数字多用表造成的电压负荷,该方法也可能带来很多问题。即使电源输出端电压可能处于编程值,但待测器件两端电压实际上低于编程值,因为在数字多用表产生电压负荷。因此,待测器件两端电压不是编程电压,它等于编程电压减去数字多用表电压(VDUT= VSET– VDMM)。如果忽略数字多用表电压且用户假设器件电压等于编程电压,那么功率和电阻测量将具有重大误差,因为用于计算的电压将高于待测器件电压值。当在最低工作电压附近对器件进行测试时,这个电压降还可能带来问题。如果数字多用表的电压负荷过大,器件电压可能低于最低工作电压,而且器件将无法正常工作,导致错误测量。

  通过输出较高的电源电压,可以对这个电压降进行补偿,从而为待测器件提供期望的电压。不过,数字多用表造成的电压负荷随着流经电流的变化而变化,因此补偿非常困难。 可以使用第二部数字多用表直接测量器件电压,但这将添加新的仪器设备,不仅增加测试系统的成本和复杂度,而且可能给低电流测量带来更大误差源。数字多用表给测试电路带来额外负载,致使电流高于实际流经器件的电流。虽然电源与数字多用表串联是一种非常简单的低电流测量方法,但这绝不是理想方法。

  使用高精度测量电源

  如果适用高精度测量电源,可以利用6位半高质量数字多用表对通过器件的电流进行测量,但是可以做得更简单且更准确。由于测试器件只需要1部仪器,因此测试得以简化。图2给出测试设置。

  由于只有1部仪器,很快即可开始测试,因为需要设置的设备更少。自动测量也更简单,因为只需对1部仪器进行编程。这避免了多部仪器的同步,并允许测试工程师把精力集中于测量。

  进行器件特性分析时,利用高精度测量电源比利用电源与数字多用表更准确。高精度测量电源能够测量施加于器件的电流和电压。电流是内部测量的,因此不会像串联数字多用表那样给测试电路带来电压负荷。这样,器件两端电压等于编程电压。要想进一步提高准确度,可以利用器件端口的程控检测引线直接测量电压,这使得高精度测量电源直接补偿为器件供电的测试引线上的电压降。这些测试引线具有极高的输入阻抗,因此对测试电路而言,它们实际上是零负载。利用这些特性,高精度测量电源能够在任何电流电平对器件进行极其精确的特性分析。由于在1部仪器内集成了所有这些能力,因此高精度测量电源可以大幅降低测试系统复杂性和成本。

利用高精度测量电源进行电流测量

  图2. 利用高精度测量电源进行电流测量

  利用2280S系列高精度测量直流电源对高精密基准电压源静态电流进行测量

  接下来将介绍怎样配置2280S系列高精度测量直流电源,在不连接输出情况下,对高精密基准电压源电流消耗进行测量。在数据表中给出了正在测量的这个电压基准的静态电流,电流电平典型值仅为31μA,最大值为35μA。为了进行这个测量,将仪器配置为最大精度和准确度。

  设备

  高精度测量电源减少对器件进行电流测量所需的设备数量。在本例中,使用以下设备:

  • 吉时利2280S系列高精度测量直流电源

  • 测试引线

  • 高精度基准电压源

  进行连接

  图3和图4给出这个测试的连接。

高精度测量电源与高精度基准电压源待测器件的测试连接

  图3. 高精度测量电源与高精度基准电压源待测器件的测试连接
2280S系列高精度测量直流电源与基准电压源待测器件的测试连接

  图4. 2280S系列高精度测量直流电源与基准电压源待测器件的测试连接

  测试连接相当简单,因为只需将两根引线(HI和LO)与待测器件连接。高精度电压测量不需要程控电压检测,因为电流极低,不会在测试引线产生大量电压降。建议使用屏蔽电缆,以降低噪声。如果测试电路接地,应当实现单点接地,以避免接地电流环路带来的测量误差。

配置仪器 - 低功耗待测器件实现高精度低电流测量两种方式

来源:泰克公司 作者:佚名2015年01月23日 16:12 0 分享 QQ空间 新浪微博 腾讯微博 人人网 [导读] 为了在微安量程进行高精度电流测量,必须将2280S系列高精度测量直流电源配置为最高精度。 关键词:2280S泰克公司电源测试


  配置仪器

  为了在微安量程进行高精度电流测量,必须将2280S系列高精度测量直流电源配置为最高精度。利用该仪器的彩色图形用户界面(图5),可以快速进行仪器设置,而且很容易通过前面板实现。为了使低电流测量具有最高精度,通过前面板进行仪器配置的步骤是:

低功耗待测器件实现高精度低电流测量两种方式

  对测量设置进行配置

  • 将仪器分辨率设置为6位半(图6)。

  • 开启自动调零。

  –自动调零将自动测量内部基准,针对每个触发测量对仪器清零,使测量更准确。

  • 将NPLC值设置为15 (对于50Hz电源系统,其设置为12),最大测量孔径时间。这将提高测量分辨率和精度。

低功耗待测器件实现高精度低电流测量两种方式

  对滤波器设置进行配置

  当均值滤波器开启后,仪器将返回某些测量结果平均值读数。平均值测量使得读数更稳定,支持更高的精度。滤波器设置(图7)的配置如下:

  • 将滤波器状态设置为开启。

低功耗待测器件实现高精度低电流测量两种方式

  对触发器设置进行配置

  • 将样本计数设置为10,以与滤波器计数匹配(图8)。这将利用10个连续读数填充均值滤波器,读数之间的时间很短。

  • 将滤波器计数改为10。

  –滤波器计数可以一直增加到100,这样可使读数更稳定。

低功耗待测器件实现高精度低电流测量两种方式

  对电源延迟进行配置

  对于低电流测量,为了获得准确的结果,在进行测量之前,必须留有一定的时间,使得测试系统中的电流建立其最终值。通过设置电源延迟,可以使测量延迟足够长的时间,确保电流建立。

  • 设置足够长的电源延迟,确保电流建立时间(图9)。虽然对于大多数微安电平测量而言,10ms延迟足够,但如果待测器件输入电容较大或者夹具包括外部滤波器电容器,那么可能需要更长的电源延迟。

低功耗待测器件实现高精度低电流测量两种方式

  通过这些设置,仪器测量将具有最高精度和最大的返回读数,其读数为几个高分辨率测量结果的平均值。

  运行测试

  将测量设置配置为最高精度后,仪器目前已做好启动测量准备。为了启动测试,首先将输出电压(V-Set)设置为待测器件的正常电压。对于正在进行测试的高精度基准电压源,V-Set设置为3V。接着,将电流限幅(I-Limit)设置为足够低,做到既保护待测器件同时又使流经器件的电流足够高以使器件工作。对于这个器件,I-Limit将设置为最低容许值100μA。最后,开启输出,开始进行测量。图10给出仪器前面板的截图。

低功耗待测器件实现高精度低电流测量两种方式

  利用前面介绍的测量设置,2280S系列高精度测量直流电源可以进行稳定测量,最低约为100nA($0.0581)。图11给出仪器前面板截图,说明测量多么稳定,从数据轨迹可以看出,读数之间几乎波动微乎其微。此外,在显示屏底部给出统计数据,表明峰-峰值极低,读数的标准偏差很小。

低功耗待测器件实现高精度低电流测量两种方式

  实现低电流测量自动化

  为实现高精度低电流测量和自动收集数据,可对2280S系列高精度测量直流电源的配置,为此,可向仪器发送以下SCPI指令:

低功耗待测器件实现高精度低电流测量两种方式

  结束语

  利用2280S系列高精度测量电源,设计和测试工程师可以迅速而容易地对器件进行高可靠、高质量、低电流测量。其易于导航、易于读数的图形用户界面,只需数秒钟即可在测试台完成低电流测量的仪器配置。作为线性电源,其输出干净而平静,实现信号噪声最低,确保最高测量精度。测试得以简化,因为只需配置1部仪器,而且成本得以降低,因为无需额外设备。2280S系列高精度测量直流电源的测量能力确实是革命性的。


关键字:低功耗  待测器件  低电流测量  两种方式 引用地址:低功耗待测器件实现高精度低电流测量两种方式

上一篇:测量物质水分的两种方式
下一篇:温度传感器在工业温度测量中的误差分析

推荐阅读最新更新时间:2024-03-30 23:32

16-bit MCU实现超低功耗运动检测
谐振 LC 传感器技术用于运动检测已有数年,包括流量计量以及其它低速转动检测系统等。几乎在所有情况下,推动上述传感器设计发展的共同主线都是低功耗解决方案的需求,它通常为电池供电设备的低功耗解决方案。通过模拟测量组件与独立于主 CPU 工作的状态机处理接口相结合,本文以德州仪器 (TI) 的 MSP430FW42x 系列16位MCU为例,给出超低功耗运动检测系统解决方案的清晰说明。 图 1 显示了简易旋转运动检测系统的实施。除了微控制器与显示器之外,还显示了二通道谐振 LC 传感器的配置。单一传感器仅可用于转动检测,添加了第二个传感器后,就还可提供方向信息。 图 1 MSP430FW42x 转动系统原理图 传感器原理 使用
[测试测量]
16-bit MCU实现超<font color='red'>低功耗</font>运动检测
MCU系统低功耗设计问题
(1)系统中单片机以外的其它电路器件尽可能选用静态功耗低的器件,如选用CMOS电路芯片。 (2)外部设备的选择也要尽可能支持低功耗设计。 (3)设计外部中断唤醒电路,使单片机在等待时可进人体眠模式或待机模式,需要时由外部中断信号唤醒。 (4)设计外部器件的电源控制电路.使外部器件或设备在不工作时关断供电,减少无效功耗。 (5)设计充分利用系统低功耗特点的软件。
[单片机]
STM32低功耗状态的引脚配置
在STM32进入低功耗状态时,如果闲置||或者是其他的IO没有配置好。也将会增加不必要的功耗;所以在做低功耗设计的时候需要将闲置(保证系统稳定,其他的引脚据情况而定)全部设置为模拟输入配置。具体如下图所示,由此可以实现IO零消耗。
[单片机]
STM32<font color='red'>低功耗</font>状态的引脚配置
芯原低功耗蓝牙整体IP解决方案已通过LE Audio全部功能认证
以更低的功耗和成本在各种应用中高效地实现更高质量的音频流 2024年3月28日,中国上海—— 芯原股份今日宣布其低功耗蓝牙整体IP解决方案已全面支持蓝牙技术联盟(Bluetooth SIG)发布的LE Audio规范,其中包括通过了LE Audio协议栈和LC3编解码器的认证 。该方案适用于手机、包括真无线立体声(TWS)耳机在内的蓝牙耳机、音箱及其他广泛的音频应用场景。认证详情可在蓝牙技术联盟的官方网站上搜索该解决方案的合格设计ID号(206187)获取。 LE Audio是蓝牙技术联盟基于蓝牙5.2及以上版本规范推出的新一代蓝牙音频技术标准,旨在提供更高质量的音频体验。 芯原的低功耗蓝牙整体IP解决方案包含射频I
[网络通信]
芯原<font color='red'>低功耗</font>蓝牙整体IP解决方案已通过LE Audio全部功能认证
STM32使用UCOSII支持低功耗模式
在不在系统的裸奔的软件中,使用RTC+STOP模式很容易实现低功耗模式,但是在UCOS之类的操作系统,实现这一模式就有点麻烦,最大的问题是任务切换是无法控制的,经常出现唤醒之后程序跑飞的情况。 首先,要把休眠的代码段放在低优先级任务中,不一定是系统自带的空闲任务,也可以是用户自定义的最低优先级的任务。 其次,在休眠代码的前后加上两个指令: //=================================================================================== OSSchedLock(); //禁止任务调度 while(1) { .....//休眠代码RTC+STOP P
[单片机]
大联大友尚推出意法半导体最新的蓝牙低功耗解决方案
2016年10月27日,致力于亚太地区市场的领先半导体元器件分销商---大联大控股宣布,其旗下友尚推出意法半导体(STM)首款低功耗蓝牙Bluetooth Low Energy无线通信系统芯片(SoC)---BlueNRG-1,其兼备优异的能效和强大射频性能,可满足快速增长的大规模低功耗蓝牙市场的需求。 低功耗蓝牙技术是智能传感器和穿戴设备、零售店导航收发器(beacon)、汽车无钥匙进入系统、智能遥控器、资产跟踪器、工控监视器、医用监视器等互联网设备的理想选择。根据ABI Research预测,随着蓝牙平板计算机和智能手机市场爆发,用户与低功耗蓝牙设备通信有方便的图形接口可用,支持低功耗蓝牙的物联网产品到2021年出货量将
[网络通信]
基于超低功耗无线芯片SX1212的无线数传模块设计
   SX1212 是SEMTECH推出的一款超低功耗的单芯片无线芯片,频率范围从300MHz到510MHz。SX1212经过优化具有非常低的接收功耗,典型接收电流为2.6mA, 远小于同类收发器的接收电流。工作电压为2.1-3.6V,最大发射功率+12.5dBm, SX1212集成度非常高,其包含了射频功能和逻辑控制功能的集成电路,内部集成压控振荡器、锁相环电路、功率放大电路、低噪声放大电路、调制解调电路、变频器、中放电路等。此外它整合了基带调制解调器的数据传输速率高达150Kbps数据处理功能包括一个64字节的FIFO,包处理,自动CRC生成和数据白化。它的高度集成的架构允许最少的外部元件数量,同时保持设计的灵活性。所有主要的射
[安防电子]
基于超<font color='red'>低功耗</font>无线芯片SX1212的无线数传模块设计
低功耗TCXO晶振可大幅提高物联网电池寿命
电池供电的设备,无论有没有无线连接,都可以受益于更长的电池寿命。每一个需要消耗能量的部件都会消耗电池,其中就包括振荡器。近日,MEMS时序市场一流公司SiTime 发布了SiT5008温度补偿硅MEMS振荡器(TCXO)。据介绍,SiT5008非常适合连接的消费类和IoT设备,例如Internet连接的音频视频,顶置流设备,工业智能电表以及其他使用低功耗无线连接的设备。 SiT5008是一款小型,低功耗±2ppm的MEMS TCXO,具有以下功能: ◆10MHz至60MHz之间的任何频率精确到6位小数 ◆ ±2ppm至±10ppm的频率稳定性 ◆工作温度为-40至+85°C ◆ 1.8V典型值为3.5mA的低功耗 ◆待机模
[嵌入式]
<font color='red'>低功耗</font>TCXO晶振可大幅提高物联网电池寿命
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved