推荐阅读最新更新时间:2024-03-30 23:32
RPS基准点系统的测量原理分析
随着汽车制造业的迅速发展,对汽车制造综合误差的要求也日益严格。而制造综合误差又主要由各个零部件的制造精度所决定的,因此必须有行之有效的控制手段来保证零部件的制造精度,RPS基准点系统就是为此目地而专门设计的,现已广泛应用在德国大众公司及相关配套厂中。 RPS基准点系统以汽车车身坐标系为唯一坐标系,所有零部件的理论坐标数据都以汽车车身坐标表达。采用RPS基准点系统,可使零件设计基准点、工艺夹紧点、工艺定位点、测量基准点统一,实现精确的坐标控制,提高了零部件的制造精度,减少了零部件因基准不协调而产生的偏差,汽车的装配精度也得以提高,汽车生产过程的质量稳定性有了可靠保证。 在汽车生产过程中要使用大量的模具,理解和掌握RPS基准点系统的
[测试测量]
万用表测量电压原理_万用表怎么测电压_万用表测电压的方法
万用表是我们常用的测试工具,主要用来测试电压、电阻、电流等参数,在电子产品的测试、维修及产品制作上起到很大的作用。万用表的主要组成是由电流表、刻度盘、量程选择开关、表笔组成的。万用表的型号众多,但基本上使用方法是相同的。下面我们介绍一下用万用表测电源方法以及万用表测电压原理。 万用表测量电压原理 1、直流电压转换电路 2、交流电压转换电路 万用表怎么测电压_万用表测量电压的方法 万用表测电压方法首先要将量程开关对准标有V的五档范围内(测试交流电压要对准交流电压的档位,测试直流电压时要对准直流电压的档位)。测量电压时,要把电表表笔并接在被测电路上。根据被测电路的大约数值,选择一个合适的量程
[测试测量]
示波器探头测量原理
在进行电子制作的时候,我们免不了要使用各种各样的测试仪器,而其中比较常用的的一种就是示波器了。使用示波器的时候,我们使用探头来测量时间、频率和电压值等物理量。但是你是否有想过,探头是如何测量这些物理量呢? 探头利用高阻抗的特性来保证电路不受到测量部分的干扰,但有些时候我们需要以低阻抗的测试方式来对某些电路进行测量。比如50欧姆阻抗的射频输出电路,对于有50欧姆阻抗测量功能的机器来说,这就是按一下按键的问题;但是对于普通的示波器来说,这时候探头就不适合测量了。你需要用BNC三通和50欧的末端电阻来进行匹配,并在另一端直接连接到50欧姆的输出端。 对于很多爱好者来说,这些内容都是非常简单却又很少去思考的问题。其实我们身边的测量仪
[测试测量]
激光干涉原理在振动测量中的应用
0 引 言 振动量值的计量是计量科学中一个非常重要的方面。在现实中,描述振动特性的最常用的量值是位移、速度、加速度。常用的测振技术是接触式测量。在测量物体上安装加速度传感器,利用加速度传感器的电荷输出信号实现加速度-速度-位移的相关测量。如果测量较小物体的振动,附加的传感器质量往往影响被测物体的振动,从而产生测量误差;而且一些工作场合因被测物体表面影响或是测量条件的限制往往不允许在被测物体表面安装测振传感器。因此设计和开发新型的非接触式、高精度、实时性的测振技术一直是工程科学和技术领域中的重要任务。 由于激光的方向性、单色性和相干性好等特性,使激光测量技术广泛应用于各种军事目标的测量和精密民用测量中,尤其是在测量各种微
[模拟电子]
频谱分析基本原理:快速完成高效率测量
所有电子设计工程师和科学家都曾执行过电气讯号分析,简称讯号分析。透过这项基本量测,他们可洞察讯号细节并获得重要的讯号特性资讯。不过讯号分析的成效,主要取决于量测仪器的效能,而频谱分析仪与向量讯号分析仪是两种最常用于电气讯号分析的测试设备。 频谱分析仪是广为使用的多用途量测工具,可量测输出讯号相较于频率的大小(magnitude),以便瞭解已知和未知讯号的频谱功率。向量讯号分析仪则可同时量测分析仪中频(IF)频宽之输出讯号的大小与相位,并经常用来对已知讯号执行通道内量测,例如误差向量幅度(EVM)、域码功率,及频谱平坦度。过去,频谱分析仪与向量讯号分析仪是两种各自独立的仪器,但随着量测技术不断突飞勐进,量测设备商现在已可将它们
[嵌入式]
TRL微波器件测量去嵌入校准--原理详解
前言:该教程是本人2012年跟安捷伦工程师讨论 微波器件 去嵌入技术时准备的,当时讨论主题如何解决TRL去嵌入算法频率限制问题(已申请专利),现在摘取其中TRL算法原理部分,重新整理与大家分享。 微波测量中常用的校准方法有两种: · SOLT校准,即短路-开路-负载-直通校准,适用同轴接头测量,如衰减器、低噪放等。通过测量1个传输标准件和3个反射标准件修正12项误差模型。 · TRL校准,即直通-反射-延时校准,适用非同轴接头测量,如微带线、共面波导等。通过测量2个传输标准件和1个反射标准件来决定8项误差模型。 相比SOTL 而言,TRL由于校准件制作成本低、校准精度高等优点而得到广泛的应用。下面首先对TRL校准算法进行介绍。 (
[测试测量]
解析:变频器的原理及其测量
作为电源变换装置的 变频器 ,能够将固定频率和电压的电源转换成可变的频率和电压。进而完成V-F的转换来控制异步电机。本文要解析的是变频专用电机,能够在 变频器 的驱动下,实现不同的的转速和扭矩,进而满足负载需求。 一、变频器概述 变频器主要分为两类:电压型,将电压源的直流变换为交流,其直流回路通过电容滤波。 输出电压波形为矩形波电流波形近似正弦波。一般要深度负反馈,有稳定作用;电流型,将电流源的直流变换为交流,其直流回路通过电感滤波。电流波形为矩形波电压波形近似正弦波。一般为正反馈,有增益作用。 现在的变频器主要采用VVVF变频或矢量控制变频,也就是先把工频交流电通过整流器转换成直流电源,再把直流电源转换成频率、电压均可控制
[测试测量]
内径测量原理及理论基础
对内径尺寸的测量,国内目前测量的方法多以接触式测量为主。但接触式测量由于测量工具磨损、人为因素等原因造成测量误差较大,不能满足快速、精确的内径尺寸检测要求。本文采用光三角测量原理,结合半导体激光准直技术、现代传感技术、伺服控制技术和计算机技术,研制了一种非接触式内径尺寸光电测量系统,实现了内径尺寸的无损、高精度测量。 内径测量原理及理论基础 应用光探针扫描被测件内径是单光三角测量原理实现非接触测量的基础 。单光三角方案测量原理框图如图1所示。图中,1为半导体激光器;2为发射光学系统;3为光束转向系统;4为反射分光棱镜;5为接收成像光学系统;6为光电位置传感器;7为信号处理系统;8为稳功率激光电源。 系统测量的位置尺寸 式中
[测试测量]