电源设计十日谈 | 第六日:开关损耗和传导损耗测试

发布者:真诚相伴最新更新时间:2017-05-11 来源: eefocus关键字:电源设计  开关损耗  传导损耗测试 手机看文章 扫描二维码
随时随地手机看文章

电源设计人员的需求正变得越来越高,他们面临着巨大的压力,需要改善效率,降低成本,缩短产品开发周期。电源设计是一项复杂的工作,这一过程有许多校验点。在电源设计系列专题中,我们将向您介绍10个设计阶段中每个设计阶段的测试要求,并给出小贴士,让您的测试更高效,让您的生活更轻松。

在电源测试系列的本篇微信中,我们将介绍测试电源开关损耗和传导损耗的各个步骤。


经过电源开关和磁性器件的开关损耗和传导损耗对系统整体损耗有着巨大影响,正因如此,应尽可能精确地使这些损耗达到最小,这一点至关重要。

1.jpg


MSO5000B示波器测量开关损耗和传导损耗的实例。

首先,不要单纯依赖产品技术资料,它们经常会产生误导,特别是在计算开关损耗和传导损耗时。此外,它们没有考虑工作条件和电路寄生信号,也没有提供完善的损耗信息。


在测试时,首先应检查整流器开关,如电路活动和负载时MOSFETs、IGBTs和磁性器件的损耗。由于大多数磁性器件采用定制设计,如开关器件,因此最好在工作状态下测试磁性器件。这一步可以正确分析其特性。

2.jpg


MSO5000B上显示的磁性特性分析。

在测量开关损耗时,我们推荐使用MSO5000B示波器,并配备相应的电压探头和电流探头。为实现最好的精度和可重复性,在进行任何测量前应先校正探头时延,为了保证确定周期内结果的准确性,应使用滤波功能和平均功能。

在使用示波器测量开关损耗时,先把电压乘以电流。然后取启动或关闭过程中得到的功率波形的中间值。当然,功率分析软件可以大大简化这个过程,因此我们强烈推荐使用功率分析软件。

为动态测试磁性功率损耗和磁性属性,建议使用我们的DPOPWR软件。这个软件提供了自动计算功能,在电路活动时,可以测量高功率开关上的可重复开关损耗和传导损耗。


3.jpg

这是MSO5000B示波器测量的磁性损耗实例。



小贴士

1. 为测量开关损耗,可以使用高分辨率示波器,一定要校正电压探头和电流探头时延。使用滤波和平均功能,在设定的时间周期内获得准确的结果。

2. 如果想在示波器上测量开关损耗,可以把电压乘以电流,取启动或关闭期间得到的功率波形的中间值。如果有功率分析功能,这个程序会更简便、可重复性更强。


关键字:电源设计  开关损耗  传导损耗测试 引用地址:电源设计十日谈 | 第六日:开关损耗和传导损耗测试

上一篇:电源设计十日谈 | 第二日:低压DC电路开机测试
下一篇:NI升级版无线测试系统进一步降低了无线设备生产测试的成本

推荐阅读最新更新时间:2024-03-30 23:33

ROHM超级结MOSFET PrestoMOS产品群新增R60xxMNx系列
全球知名半导体制造商ROHM的高速trr※1型600V 超级结MOSFET PrestoMOS※产品群又新增“R60xxMNx系列”,非常适用于要求低功耗化的白色家电及工业设备等的电机驱动。PrestoMOS是拥有业界最快trr性能的功率MOSFET,以业界最小的开关损耗著称。因使搭载变频器的白色家电的功耗更低而获得高度好评。 此次开发的“R60xxMNx系列”通过优化ROHM独有的芯片结构,在保持PrestoMOS“高速trr性能”特征的基础上,还成功地使Ron※2和Qg※3显著降低。由此,在变频空调等电机驱动的应用中,轻负载时的功率损耗与以往的IGBT相比,降低约56%,节能效果非常明显。 不仅如此,“R60xxMNx系列
[家用电子]
ROHM超级结MOSFET PrestoMOS产品群新增R60xxMNx系列
技术:利用低压降压IC实现的一款偏置电源设计
本文将就一款可将高AC输入电压转换为可用于电子能量计等应用的低DC电压简单电路。在这种特殊的应用中,无需将输出电压隔离于输入电压。此处,经过整流的 AC 输入电压可高达375 VDC,同时数百毫安电流时的输出电压可在5伏以内。这些大容量应用通常受到成本的推动,因此要求低部件数量/低成本的电路。步降稳压器提供了一种低成本的解决方案,但在使用高电压输入实施时却充满挑战。在连续模式下,该降压稳压器的占空比为输出电压除以输入电压,即400V转换到5V时占空比为1.25%。如果在100kHz下运行电源,则需要 125 nS 的导通时间,而由于开关速率限制的存在其通常是不切实际的。 图 1 低压降压 IC 实现了简单、经济的偏置电源
[电源管理]
技术:利用低压降压IC实现的一款偏置<font color='red'>电源设计</font>
开关损耗传导损耗测试(连载六):损耗测试步骤要点
我们将介绍测试电源开关损耗和传导损耗的各个步骤。 记住,经过电源开关和磁性器件的开关损耗和传导损耗对系统整体损耗有着巨大影响,正因如此,应尽可能精确地使这些损耗达到最小,这一点至关重要。 MSO5000B示波器测量开关损耗和传导损耗的实例。 首先,记住不要单纯依赖产品技术资料,它们经常会产生误导,特别是在计算开关损耗和传导损耗时。此外,它们没有考虑工作条件和电路寄生信号,也没有提供完善的损耗信息。 在测试时,首先应检查整流器开关,如电路活动和负载时MOSFETs、IGBTs和磁性器件的损耗。由于大多数磁性器件采用定制设计,如开关器件,因此最好在工作状态下测试磁性器件。这一步可以正确分析其特性。
[测试测量]
<font color='red'>开关损耗</font>和<font color='red'>传导</font><font color='red'>损耗</font><font color='red'>测试</font>(连载六):<font color='red'>损耗</font><font color='red'>测试</font>步骤要点
基于TMS320F2812的超磁致伸缩换能器驱动电源设计
稀土超磁致伸缩换能器是利用超磁致伸缩材料将电磁能转换为机械振动的器件,与目前广泛使用的压电陶瓷换能器相比,具有工作范围广、转换效率高、响应速度快等优点,主要应用在水声、超声和主动振动控制等领域。其中,超磁致伸缩换能器的驱动电源是影响系统工作性能优劣的关键因素。针对电源控制技术的数字化、智能化发展,文中设计了一种基于DSP器件的数字逆变电源,用以驱动超磁敛伸缩换能器正常工作,同时进行谐振频率的自动跟踪。本课题采用的超磁致伸缩换能器主要用于小型超声波清洗机中,其对 驱动电源 主要技术指标要求为:输入交流电乐为220 V,输出频率为15~25 kHz,输出功率为50 W左右。文中首先讨论该驱动电源系统的总体设计,然后分别从硬件电路设计和
[电源管理]
基于TMS320F2812的超磁致伸缩换能器驱动<font color='red'>电源设计</font>
逆变电源设计进一步输入24VDC输出220VDC整流
随着现代汽车用电设备种类的增多,功率等级的增加,所需要电源的型式越来越多,包括交流电源和直流电源。这些电源均需要采用开关变换器将蓄电池提供的+12VDC或+ 24V DC的直流电压经过DC-DC变换器提升为+220VDC或+240VDC,后级再经过DC-AC变换器转换为工频交流电源或变频调压电源。对于前级DC-DC变换器,又包括高频DC-AC逆变部分、高频变压器和AC-DC整流部分,不同的组合适应不同的输出功率等级,变换性能也有所不同。 推挽逆变电路以其结构简单、变压器磁芯利用率高等优点得到了广泛应用,尤其是在低压大电流输入的中小功率场合;同时全桥整流电路也具有电压利用率高、支持输出功率较高等特点。鉴于此,本文提出了
[电源管理]
逆变<font color='red'>电源设计</font>进一步输入24VDC输出220VDC整流
基于开关电源设计中浪涌抑制模块的方案拾遗
目前,考虑到体积,成本等因素,大多数AC/DC变换器输入整流滤波采用电容输入式滤波方式,电路原理如图1 所示。 由于电容器上电压不能跃变,在整流器上电之初,滤波电容电压几乎为零,等效为整流输出端短路。如在最不利的情况(上电时的电压瞬时值为 电源 电压峰值)上电,则会产生远高于整流器正常工作电流的输入浪涌电流,如图2所示。当滤波电容为470μF并且电源内阻较小时,第一个电流峰值将超过100A,为正常工作电流峰值的10倍。 图2 上电后输入浪涌电流 浪涌电流会造成电源电压波形塌陷,使得供电质量变差,甚至会影响其他用电设备的工作以及使保护电路动作;由于浪涌电流冲击整流器的输入熔断器,使其在若干次上电过程的浪涌电流冲击下而非过
[电源管理]
基于开关<font color='red'>电源设计</font>中浪涌抑制模块的方案拾遗
具有完善保护功能的DSP三相SPWM逆变电源设计
1系统介绍 根据结构不同,变频电源可分为直接变频电源与间接变频电源两大类。本文所研究的变频 电源 采用间接 逆变 结构即交-直-交变换过程。首先通过单相全桥整流电路完成交-直变换,然后在DSP控制下把直流电源转换成三相 SPWM 波形供给后级滤波电路,形成标准的正弦波。变频系统控制器采用TI公司推出的业界首款浮点数字信号控制器TMS320F28335,它具有150MHz高速处理能力,具备32位浮点处理单元,单指令周期32位累加运算,可满足应用对于更快代码开发与集成高级控制器的浮点处理器性能的要求。与上一代领先的数字信号处理器相比,最新的F2833x浮点控制器不仅可将性能平均提升50%,还具有精度更高、简化软件开发、兼容定点C28
[电源管理]
具有完善保护功能的DSP三相SPWM逆变<font color='red'>电源设计</font>
电源设计:如何利用波特图来满足动态控制行为的要求
本文介绍如何利用波特图来快速评估您的电源设计是否满足动态控制行为要求。电源通常通过控制环路保持固定的输出电压。这个控制环路可能稳定,也可能不稳定;可以快速调节,也可以慢速调节。在大多数情况下,都可以使用波特图来描述控制环路。通过使用波特图,您可以查看控制环路的速度,特别是其调节稳定性。 图1.使用控制环路(以绿色显示)来调节其输出电压的开关稳压器示例 图1所示是采用降压拓扑的典型开关稳压器。它将较高的输入电压转换为较低的输出电压。目标是尽可能准确地调节输出电压VOUT。为此,通过反馈(FB)引脚将控制环路集成到电路中。它可以检测到VOUT的电压变化。控制环路应能够快速响应,以便始终尽可能准确地调节VOUT。每当输入电压
[电源管理]
​<font color='red'>电源设计</font>:如何利用波特图来满足动态控制行为的要求
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved