示波器基本原理之一:带宽

发布者:BlissfulSpirit最新更新时间:2017-06-04 来源: eefocus关键字:示波器  基本原理  带宽 手机看文章 扫描二维码
随时随地手机看文章

示波器最重要的单一特性,即带宽在频率域提供范围标示。 带宽是大多数工程师选择示波器时首先考虑的技术指标。带宽以Hz衡量,根据频率决定信号范围,以便能精确显示及进行测试。 带宽不足,则示波器将不能显示出实际信号的准确表现。例如,信号的幅度也许会不准确、边缘也许会不平整、波形细节情况也许会丢失。

 

1. 示波器带宽的定义

如图 1 所示,所有示波器都会在较高频率时出现低通频率响应衰减。大多数带宽技术指标在 1 GHz 及以下的示波器通常会出现高斯响应,并在 -3 dB 频率的三分之一处表现出缓慢下降特征。如图 2 所示,带宽技术指标大于 1 GHz 的示波器通常拥有最大平坦频率响应。这类响应通常在 -3 dB 频率附近显示出具有更尖锐下降特征、更为平坦的带内响应。

image

图1 - 示波器高斯频率响应

image

图2 - 示波器最大平坦度频率响应

示波器的频率响应各有其优缺点。具有最大平坦度响应的示波器带内信号的衰减量少于具有高斯响应的示波器,这表明前者能够更精确地测量带内信号。具有高斯响应的示波器带外信号的衰减量小于具有最大平坦度响应的示波器,这表明在相同的带宽技术指标下,具有高斯响应的示波器拥有更快的上升时间。有时,将带外信号衰减到更高的程度有助于消除会造成采样混叠的高频率分量,从而达到 Nyquist 标准(fS > 2 x fMAX)。

无论示波器具有高斯响应、最大平坦度响应或介于二者之间的响应,输入信号衰减 3 dB 所在的最低频率称为示波器的带宽。使用正弦波信号发生器,在扫描频率上测试示波器的带宽和频率响应。信号 -3 dB 频率处衰减约为 -30% 幅度误差。所以当信号的主要频率接近示波器的带宽时,很难对信号进行非常精确的测量。

与示波器的带宽技术指标有极大关系的还有示波器的上升时间技术指标。示波器具有高斯型响应时,按照 10% 至 90% 标准,其上升时间大约为 0.35/fBW。对于具有最大平坦度响应的示波器,其上升时间技术指标的范围通常在 0.4/fBW 左右,取决于频率下降特征的尖锐程度。切记,示波器的上升时间并不是示波器可以精确测量的最快边沿速度。假定输入信号具有理论上无限快的上升时间(0 ps),示波器的上升时间是示波器可能产生的最快边沿速度。虽然这个理论上的技术指标是不可测量,这是因为脉冲发生器实际上不能生成无限快的边沿,但可以通过输入边沿速度比示波器上升时间技术指标快 3 到 5 倍的脉冲信号,以测量示波器的上升时间。

 

2. 数字应用需要的带宽

根据以往经验,示波器带宽应比被测系统的最快数字时钟速率至少快 5 倍。如果示波器满足这一标准,则其能够捕捉高达 5 次的谐波,并实现最小的信号衰减。这个信号分量对于确定数字信号的总体波形非常重要。但是如果您需要对高速边沿进行精确测量,那么此一次方程式不会考虑快速上升沿和下降沿中嵌入的实际最高频分量。

若要确定所需的示波器带宽,有一种更精确的方法,即确定数字信号中出现的最高频率,而不是最大时钟速率。最高频率将由设计中的最快边沿速度决定。所以要做的第一件事就是确定最快信号的上升时间和下降时间。通常可以从设计所用器件的公开技术指标中获得这一信息。

 

第一步: 确定最快的边沿速度

使用一个简单的公式来计算最大的“实际”频率分量。 Howard W. Johnson 博士已经针对此主题撰写了一本书《High-speed Digital Design – A Handbook of Black Magic》。他将这个频率分量称为 " 拐点 " 频率 (fknee)。所有快速边沿都有无穷多的频率分量。然而,在快速边沿的频谱图中有一个曲折点(或“拐点”),此处高于 fknee 的频率分量对于确定信号的波形影响不大了。

第二步:计算fknee

对于上升时间按照 10% 至 90% 准则计算的信号,fknee 等于 0.5 除以信号的上升时间。对于上升时间按照 20% 至 80% 准则计算的信号(这在当前许多器件技术指标中十分常见),fknee 等于 0.4 除以信号的上升时间。不要将这些上升时间与示波器技术指标中的上升时间相混淆。我们现在讨论的是实际的信号边沿速度。

f knee = 0.5 / RT (10% - 90%)

f knee = 0.4 / RT (20% - 80%)

第三步: 计算示波器带宽

根据在测量上升时间和下降时间时希望达到的精度,确定测量信号所需要的示波器带宽。表 1 列出了决定示波器(具有高斯频率响应或最大平坦度频率响应)测量精度的多个乘积系数。请记住,大多数带宽技术指标为 1 GHz 及以下的示波器通常具有高斯型响应,而大多数带宽高于 1 GHz 的示波器具有最大平坦度型响应。

image

 

我们现在看一下这个简单实例:

通过近似高斯频率响应测量 500 ps 上升时间(10-90%),确定示波器的最小必需带宽

如果信号具有近似 500 ps 的上升 / 下降时间(基于 10% 至 90% 标准),那么信号中的最大实际频率分量(fknee)将大约等于 1 GHz。

f knee = (0.5/500ps) = 1 GHz

根据表1,如果在对信号进行实际的上升时间和下降时间测量时,您能够容忍最多 20% 的计时误差,那么可以使用 1 GHz 带宽示波器用于数字测量应用。但是如果需要 3% 左右的计时精度,则最好使用 2 GHz 带宽的示波器。

 

3. 数字时钟测量比较

现在,我们用不同带宽的示波器来测量特征与本例相似的数字时钟信号。

图 3 显示了使用 100 MHz 带宽示波器对边沿速度(10% 至 90%)为 500 ps 的 100 MHz 数字时钟信号进行测量获得的波形结果。如图所示,示波器仅允许该时钟信号的 100 MHz 基本波形通过,从而将时钟信号显示为近似正弦波。对于许多采用 8 位 MCU 且时钟速率在 10 MHz 至 20 MHz 之间的设计,使用 100 MHz 示波器进行测量就足以满足需要;但要测量 100 MHz 时钟信号,100 MHz 带宽示波器就无能为力了。

image

图3 - 使用100MHz带宽示波器捕获100MHz时钟信号

500 MHz 带宽示波器能够捕获 5 次谐波,因而成为我们首选推荐的解决方案(如图 4 所示)。但是当测量上升时间时,我们看到示波器测得的结果为大约 800 ps。在这种情况下,示波器无法非常精确地测量此信号的上升时间。示波器实际上测量的是接近于自身上升时间(700 ps)的目标,而不是输入信号的上升时间(500 ps 左右)。如果在这个数字测量应用中计时测量非常重要的话,我们需要使用更高带宽的示波器。

image

图4 - 使用500MHz带宽示波器捕获100MHz时钟信号

借助 1 GHz 带宽示波器,我们可以获得更精确的信号图形(如图 5 所示)。当测量上升时间时,我们看到示波器测得的结果大约为 600 ps。这个测量为我们提供大约 20% 的测量精度,是一种备受欢迎的测量解决方案,特别适合预算紧张的状况。但是这种测量也未必能够涵盖全部的应用范畴。

image

图5 - 使用1 GHz带宽示波器捕获100MHz时钟信号

如果想要以超过 3% 的精度和 500 ps 的边沿速度对信号进行测量,我们确实需要使用 2 GHz 及以上带宽的示波器(通过之前的示例确定了这一数值)。如图 6 所示,2-GHz 带宽的示波器能够更精确地显示这个时钟信号,同时非常准确地测量上升时间(约 520 ps)。

image

图6 - 使用2GHz带宽示波器捕获100MHz时钟信号

 

4. 模拟应用需要的带宽

几年前,大部分示波器厂商都建议您选择带宽比最大信号频率至少高 3 倍的示波器。虽然这个“3X”倍数不适用于数字应用,但是对模拟应用(例如调制射频)来说还是适合的。要了解这个 3:1 的倍数从何而来,让我们来看一下 1 GHz 带宽示波器的实际频率响应。

图 7 显示了在 Keysight 1 GHz 带宽示波器上测得的扫频响应结果(20 MHz 至 2 GHz)。如图所示,在 1 GHz 处的输入结果衰减了大约 1.7 dB,正好在 -3 dB 限制范围内(示波器定义带宽)。要想对模拟信号进行精确测量,您仍需要使用频段一直比较平坦、具有极小衰减的示波器。在示波器的 1 GHz 带宽中,大约有三分之一的部分几乎没有衰减(0 dB)。但是,并非所有示波器均表现出此类响应。

image

图7 - 使用Keysight MSO7104B 1-GHz 带宽示波器进行扫描频率响应测试

图 8 显示了使用其他厂商的 1.5 GHz 带宽示波器执行扫描频率响应测试。这个示例是典型的非平坦频率响应。它的响应特征既不属于高斯型,也不属于最大平坦度型。该响应的图像看起来“高低不平”且呈现多个峰值,会对模拟信号或数字信号带来严重的波形失真。可惜的是,在示波器的带宽技术指标(3 dB 衰减频率)中没有提到其他频率上的衰减或放大。信号在示波器带宽的五分之一处衰减了大约 1 dB(10%)。

因此在这种情况下,采用 3X 经验法则并不可取。在购买示波器时,最好选择规范的示波器厂商并要特别注意示波器频率响应的相对平坦度。

image

图8 - 使用非是德科技生产的 1.5-GHz 带宽示波器进行扫描频率响应测试

5. 总结

对于数字应用,您应当选择带宽比设计中的最快时钟速率至少高 5 倍的示波器。但是,如果您需要对信号进行精确的边沿速度测量,则必须先确定信号中的最大实际频率。

对于模拟应用,应当选择带宽比设计中的最高模拟频率至少高 3 倍的示波器。但这个建议仅适用于在较低频段中具有相对平坦的频率响应的示波器。


关键字:示波器  基本原理  带宽 引用地址:示波器基本原理之一:带宽

上一篇:浅谈示波器探头的分类及对测量的影响
下一篇:示波器基本原理之二:采样率

推荐阅读最新更新时间:2024-03-30 23:33

示波器使用小技巧汇总
示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图象,便于人们研究各种电现象的变化过程。 示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。 下面就简单说下示波器使用小技巧: 1.通用示波器通过调节亮度和聚焦旋钮使光点直径最小以使波形清晰,减小测试误差;不要使光点停留在一点不动,否则电子束轰击一点宜在荧光屏上形成暗斑,损坏荧光屏。 2.测量系统
[测试测量]
<font color='red'>示波器</font>使用小技巧汇总
日图带你学示波器-术语表第二波
示波器 -术语表-二 D 延时时基-一种带有扫描的时基,可以相对于主时基扫描上预定的时间启动(或被触发启动)。您可以更清楚地看到事件,看到单纯使用主时基扫描看不到的事件。 数字信号-电压样点使用离散的二进制数字表示的一种信号。 数字示波器-使用模数转换器(ADC)把实测电压转换成数字信息的一种示波器。数字示波器的类型包括:数字存储示波器、数字荧光示波器。混合信号示波器和数字采样示波器。 数字荧光示波器(DPO)-一种数字示波器,其显示特点模型与模拟示波器密切相关,同时提供传统数字示波器的优势(波形存储、自动测量、等等)。DPO采用并行处理结构,把信号传送到光栅型显示器,实时提供信号
[测试测量]
基于PXI总线的虚拟数字存储示波器软件设计
基于微型计算机的虚拟仪器是现代电子测量仪器发展的重要方向, 其中虚拟数字存储 示波器 是一种应用十分广泛的虚拟仪器。虚拟示波器能充分发挥和利用计算机的软硬件资源, 使之成为仪器功能的组成部分, 比如: 利用计算机的图形界面完成对虚拟控制和显示面板的定义; 利用计算机的存储及文件功能完成对信号的记忆、存储和回显; 利用计算机的数据处理及控制能力完成对数据的采集、传送、分析处理和显示等。PXI 总线是最新一代的测试总线技术, 是PCI 总线在测试领域的扩展,于1997 年被美国NI 公司首次提出, 并于次年被采用为工业标准。PXI 总线可简单地认为是Micorosoft Windows、Compact PCI(CPCI) 和VXI 技
[测试测量]
基于PXI总线的虚拟数字存储<font color='red'>示波器</font>软件设计
泰克示波器在进行纹波测量时有哪些注意事项
如今,电子 电路 (比如手机、服务器等领域)的切换速度、信号摆率比以前更高,同时芯片的封装和信号摆副却越来越小,对噪声更加敏感。因此,今天的电路设计者们比以前会更关心电源噪声的影响, 示波器 是用来进行电源噪声 测量 的一种常用工具,但是如果使用方法不对可能会带来完全错误的测量结果。 今天给大家分享一下泰克示波器纹波测量注意事项: 1、尽量使用示波器最灵敏的量程档 2、尽量使用AC 耦合 估直流电源输出电压或 电流 的质量 3、尽量使用小衰减比的探头 4、尽量使用探头的短地线 5、根据需要使用带宽限制功能等 纹波电压在产品中是一项很重要的参数,过大的纹波电压不仅会直接影响 音频 电路的信噪比,甚至引起电路的误动作。而且产品
[测试测量]
泰克<font color='red'>示波器</font>在进行纹波测量时有哪些注意事项
实验室示波器使用中需要注意的问题点
  示波器是电子测量中常用的测量仪器之一,今天小编为您总结了示波器使用中的常见问题和选购中的常见问题。   1.对一个已设计完成的产品,如何用示波器经行检测分析其可靠性?   答:示波器早已成为检测电子线路最有效的工具之一,通过观察线路关键节点的电压电流波形可以直观地检查线路工作是否正常,验证设计是否恰当。这对提高可靠性极有帮助。当然对波形的正确分析判断有赖于工程师自身的经验。   2.决定示波器探头价格的主要因素是什么?   答:示波器的探头有非常多的种类,不同的性能,比如高压,差分,有源高速探头等等,价格也从几百人民币到接近一万美元。价格的主要决定因素当然是带宽和功能。探头是示波器接触电路的部分,好的探头可以提供测试需要的保真
[测试测量]
如何提高相位差的测试精度?
测量相位差时,若要精确的测量,需要进行通道间的延迟校准和探头间的延迟校准。ZDS2022示波器内部具有通道延迟自动校准功能,每次开机都会自动进行校准。而外部探头由于受一致性(不同厂商、不同档位或工艺等因素)的影响,可能会有一点误差。探头间的延迟校准,可以通过同时输入一个边沿比较陡的信号(在最小时基时仍能看到上升沿的信号),然后使用旋钮A和旋钮B调节对应通道的延迟时间(旋钮A细调,旋钮B粗调,可调节范围为-100ns至100ns),如图7.3所示,使两通道的波形上升沿对齐。 另外,提高采样率也有助于提高测量精度。在较大的时基档位下,采样率可能会下降,此时可将存储深度设置为112Mpts,提高采样率。 图7.3延迟校正
[测试测量]
如何提高相位差的测试精度?
如何区分模拟带宽和数字实时带宽
带宽是示波器最重要的指标之一。模拟示波器的带宽是一个固定的值,而数字示波器的带宽有模拟带宽和数字实时带宽两种。数字示波器对重复信号采用顺序采样或随机采样技术所能达到的最高带宽为示波器的数字实时带宽,数字实时带宽与最高数字化频率和波形重建技术因子K相关(数字实时带宽=最高数字化速率/K),一般并不作为一项指标直接给出。从两种带宽的定义可以看出,模拟带宽只适合重复周期信号的测量,而数字实时带宽则同时适合重复信号和单次信号的测量。厂家声称示波器的带宽能达到多少兆,实际上指的是模拟带宽,数字实时带宽是要低于这个值的。例如说TEK公司的TES520B的带宽为500MHz,实际上是指其模拟带宽为500MHz,而最高数字实时带宽只能达到400M
[测试测量]
基于多功能DAQ卡的虚拟数字示波器的设计
摘 要:简要介绍了虚拟仪器的组成,基于Labwindows/CVI和NI公司的PXI-6670E数据采集卡,设计了一个虚拟数字示波器。该系统功能强大,不仅具有实时采集功能,还具有频谱分析、加窗处理、滤波功能和数字存储等功能。 关键词:虚拟仪器;Labwindows/CVI;数据采集卡;频谱分析 引言 虚拟仪器中有一类是基于多功能DAQ卡的虚拟仪器,结构简单,开发成本低,目前已经得到了广泛的应用。本文以一个基于多功能DAQ卡的虚拟数字示波器为例,来说明如何开发基于多功能DAQ卡的虚拟仪器。 虚拟数字示波器的结构与组成 虚拟数字示波器由一块PXI总线的多功能数据采集卡和相应的软件组成。将它们安装在一台运行Wi
[应用]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved