在测量一些CATV系统指标中,常常要用到频谱仪,为了使测量结果准确,在频谱仪的使用上常涉及到一个分辨带宽设置的问题。要弄清这个问题,得要知道一些频谱仪的基本原理。图1是频谱仪的基本原理框图。图中的中频频率(输入信号通过与本振信号的和频或差频产生),本振受斜波发生器的控制,在斜波发生器的控制下,本振频率将从低到高的线性变化。这样在显示时,斜波发生器产生的斜波电压加到显示器的X轴上,检波器输出经低通滤波器后接到Y轴上,当斜波发生器对本振频率进行扫描时显示器上将自动绘出输入信号的频谱。检波器输出端的低通滤波器称为视频滤波器,用在分析扫描时对响应进行平滑。
1、分辨带宽
在频谱分析仪中,频率分辨率是一个非常重要的概念,它是由中频滤波器的带宽所确定的,这个带宽决定了仪器的分辨带宽。例如,滤波器的带宽是100KHZ。那么谱线频率就有100KHZ的不定性,也即在一个滤波器的带宽频率范围内,出现了两条谱线的话,则仪器不能检出这两条谱线,而只显示一条谱线,此时仪器所反映的谱线电平(功率)是这两条谱线的电平功率的叠加。因此会出现测量误差。所以,对于两条紧密相关的谱线,其分辨力取决于滤波器的带宽。
我们以测量载波电平为例,对仪器的分辨带宽设置加以比较,图2是分辨带宽分别是(由下到上)30KHZ、300KHZ、3MHZ的频谱曲线(输入为单个载波信号),在设置分辨带宽时,我们考虑的是仪器是否能充分响应输入信号时有足够的带宽,正确的方法是展宽滤波器的带宽,当在屏幕上观察到信号载波幅度不再增加时,就表示中频滤波器对输入信号的响应已有足够的带宽了。在图中我们看到,当分辨带宽在300KHZ到3MHZ变化时,显示的信号幅度没有变化,这就可以认为300KHZ带宽已经足够了。另外,分辨带宽在300KHZ和3MHZ之间设置时,对于单个载波情况下的信号幅度没有变化,但是在实际测量CATV系统图象载波电平时却不能将分辨带宽设为3MHZ,这是因为在实际中图象载波附近存在相邻频道的伴音载波(相距1.5MHZ),3MHZ带宽则不能把相邻伴音载波的能量滤掉,这样相邻伴音载波的能量会加到正在测量的图象载波上,使测到的电平值比实际的高。
2、视频滤波器
在图1中的检波器之后的滤波器称为检波滤波器又叫视频滤波器,它是一个低通滤波器,它的作用可以减少检波器输出的噪声变化,揭示一些已被掩盖且接近本底噪声的信号,如果是测量噪声功率,它还有助于稳定测量。
检波器输出端往往存在直流分量和交流分量,直流分量代表着中频带宽内存在的能量,所以通过视频滤波器可达到提取直流分量去除一些交流分量,这样能给出更稳定的无噪声输出。图3是不同视频带宽下,检波器输出的信号图,图3a采用宽带视频滤波器,图3b采用窄带视频滤波器,由图中可看出,采用宽带滤波器时噪声的波动较大,采用窄带滤波器时波动显著减少,两者的噪声平均值却一样,也就是说滤波器不会降低平均噪声电平,但能减少噪声的峰值电平。因而能暴露出用较宽视频滤波器不能看到的低电平信号。但在某些情况下,如分析一些特殊的噪声信号时,我们则需要较宽的视频滤波器带宽,以便观察和分析,所以我们可根据不同的情况来设置视频滤波器的带宽。
视频滤波器的带宽和分辨带宽的关系是:检波前的噪声可以通过较窄的分辨带宽来降低,从而降低检波器的噪声输出电平;检波后的噪声则通过窄带视频滤波器来平滑减少噪声波动,但不能降低噪声的平均功率电平。
关键字:正确设置 频谱仪 带宽
引用地址:
如何正确设置频谱仪带宽
推荐阅读最新更新时间:2024-03-30 23:35
基于LIN总线的车灯控制系统设计
基于CAN总线的汽车车身控制已经有了广泛的应用。但随着车上总线节点的增加以及电子技术向中低档汽车延伸的发展趋势,其相对较高的实现成本就成为一种障碍。成本较低的LIN总线应运而生。LIN总线硬件的实现是基于普通的串行通信接口(SCI),甚至在子节点中可以用普通I/O口加上定时器进行模拟。LIN的目标应用是不需要CAN的性能、带宽及复杂性的低端系统,如车门控制模块、座椅调节、车灯控制和空调系统中传感器和执行器之间的通信。通常LIN子总线是现有的CAN网络的扩充,与CAN网络一起形成汽车的控制网络。当然,由于其成本较低,也可以独立用于不是特别复杂的车身控制网络中。 车灯控制系统对实时性要求不高,但车灯控制模块连接的传感器和执行器较多,
[应用]
论示波器带宽的重要性示波器探头损坏如何提前预防?
一、示波器探头容易损坏部位 要预防示波器探头故障,就必须了解示波器探头那些结构容易发生故障。根据对损坏电流探头的故障分析,发现容易损坏的探头部位大致有: a、与电流放大器连接的电路板; b、电流探头的磁环坏; c、电流探头的磁环线圈; d、电流探头的滑动夹子的外观损坏; e、电缆线断路。 二、预防示波器探头损坏方法 已经了解示波器探头易损坏的结构,就必然有对应的方法: a、切记不要带电插拔电流探头。 b、磁环是易碎的材料,掉地或使用时用力过
[测试测量]
美国开发新型VCSEL激光器,带宽破纪录
来自乔治华盛顿大学的研究人员开发出一种新的垂直腔面发射激光器(VCSEL),该激光器具有创纪录的快速时间带宽。通过组合多个横向耦合腔体可以实现这一点,从而增强了激光器的光反馈。VCSEL已成为在数据中心和超级计算机中实现节能和高速光互连的重要方法。 垂直腔面发射激光器(Vertical-Cavity Surface-Emitting Laser,简称VCSEL,又译垂直共振腔面射型激光)是一种半导体,其激光垂直于顶面射出,与一般用切开的独立芯片制程,激光由边缘射出的边射型激光有所不同。垂直腔表面发射激光器(VCSEL)是伴随单片激光谐振器的半导体激光器的重要一类,鉴于其紧凑的尺寸和光电性能用作高速、短波通信和传感器的光源,它们
[传感器]
频谱仪测试谐波经验分享
最近我遇到客户测试我们模块谐波不通过的情况,结合在以前测试时候遇到的一些疑问,最近研究了一下频谱仪测试谐波的一些原理,有一些心得跟大家分享一下。案例如下,下图是同一个模块的谐波测试,却相差了13dB,之前也有小伙伴询问过这个问题,当时我也没搞懂。这次可以解答一下。 图一 谐波测试(-30dBm) 图二 谐波测试(-43dBm) 上图是同一产品的谐波测试,测试结果却不一样;可以看到两次测试的不同在于Ref Level设置不一样,但是这不是主要的因素,真正的原因是在调整Ref Level过程中attenuation(衰减)也会跟着变化,这个衰减的意义在于保证输入信号不会过大。正是这个值的变化导致了我们测试结果的不一致。
[测试测量]
工信部透露宽带提速进展:4M以上带宽比例达50%
5月31日上午消息,在今天举行的2012宽带通信及物联网高层论坛上,工信部通信发展司司长张峰表示,今年宽带普及提速工程的目标是4兆及以上宽带接入产品的用户超过50%,经过3个月的建设,平均带宽达到了50%。 张峰说,今年4月,全国固定宽带接入规模为1.59亿。4兆及以上用户使用比例已经超过了50%。 “今年在今年年初制定目标保守了一点,去年年底,使用4兆以上带宽产品才38%到39%,今年计划提升10个百分点,达到50%。经过大家3个月的努力,平均带宽达到了50%。”张峰说。 今年工信部组织实施宽带普及提速工程。工信部苗圩表示,2012年宽带普及提速工程的阶段性目标是,一,增强宽带接入能力,新增FTTH覆盖家庭
[网络通信]
频谱仪多种内核通信机制的方案设计
多核体系结构为性能提高和节能计算等领域开辟了新的方向。核与核之间的连接方式、通信协调方式等都是研究重点。本课题的研究基于手持式频谱分析仪系统平台,该系统采用的是ARM、DSP、FPGA的三核架构。各核心分别完成不同的任务,然后核心间进行参数发送、数据交换,实现系统功能。设计重点是解决核心间的通信问题。 1 ARM与DSP、FPGA通信的硬件设计 手持式频谱仪中频信号处理板主要包括4个部分:模数转换器(AD9244)、FPGA(XS3C5000)、DSP(TMS320C6412)、ARM(AT91RM9200)。ARM在手持式频谱仪中的位置和作用如图1所示。 ARM的硬件设计参考Atmel公司提供的
[模拟电子]
示波器带宽能告诉我们什么?
理解示波器带宽 --- 上升时间和信号保真度 当示波器用户选择示波器进行关键的测量时,示波器的主要参数指标往往是选择哪一款示波器的唯一标准。示波器最主要的指标参数是: (1)带宽; (2)采样率; (3)记录长度。 带宽 - 这个指标能告诉我们什么? 模拟带宽是一个测量指标,简单的定义是:示波器测得正弦波的幅度不低于真实正弦波信号 3dB 的幅度时的最高频率(见的 IEEE - 1057)。如图 1,是一个理想的示波器带宽和幅度测量误差的曲线图,从图 1 可以看出,当被测正弦波的频率等于示波器的带宽(示波器的放大器的响应是一阶高斯型)时,幅度测量误差大约 30%。如果想测量正弦波的幅度误差只有 3%,被测正弦波的频率要比示波
[测试测量]
DDR3内存销售进入倒计时 三星下月开始量产
5月15日消息,据国外媒体报道,三星电子公司正在为DDR3内存芯片的发布做最后准备,三星将在今年晚些时候正式销售DDR3内存芯片。 三星公司周一称,英特尔公司已经校验了一部分DDR3内存芯片和模块。这种校验旨在检测新内存芯片与英特尔电脑芯片组的兼容性,它是芯片发布前的最后步骤之一。 DDR3是人们期待已久的DDR2内存芯片的更新换代产品,现在绝大多数电脑采用DDR2。新芯片将提供高达1.6Gbps的数据传输速度,是DDR内存带宽的两倍。这意味着可以更好地发挥多内核处理器的3D图形和多线程应用功能。DDR3芯片消耗的电力也更少,芯片电压约为1.5伏,低于DDR2的1.8伏,这意味着可以延长笔记本电池的工作时间。 三星公司表示,它
[焦点新闻]