利用Advantest R3132频谱分析仪测量回波损耗

发布者:caoda143最新更新时间:2019-11-28 来源: elecfans关键字:Advantest  R3132  频谱分析仪  回波损耗 手机看文章 扫描二维码
随时随地手机看文章

摘要:该应用笔记包含了一些基本的操作程序,可帮助工程师利用Advantest® R3132频谱分析仪(或类似频谱分析仪)完成对回波损耗的测量,并提供了在实验室测量回波损耗的相关知识。其中一些特定的按键操作只适用于R3132频谱分析仪,但是一些基本的操作程序对所有的频谱分析仪都适用。该应用笔记并不是一个的全面的使用指南,读者还需要掌握一些频谱分析仪的基本操作知识。 

回波损耗要求

E3、ITU G.703和ETS 300-686规定的输入回波损耗如表1所列,输出回波损耗要求如表2所列。

表1. 输入端最小回波损耗

Frequency Range (kHz)Return Loss (dB)
860 to 172012
1720 to 34,36818
34,368 to 51,55014


表2. 输出端最小回波损耗

Frequency Range (kHz)Return Loss (dB)
860 to 17206
1720 to 51,5508

Dallas Semiconductor线路接口单元(LIU)的回波损耗测量

ETS 300-686规范中的A.2.5和A.2.6细则给出了测量E3回波损耗的测试设备和程序。图1所示测试装置用于测量输入回波损耗,并验证是否符合表1要求。输出回波损耗的测量装置与之相似,只将原本连接到接收机输入端的测量装置连接到发射机的输出端即可。

图1. 回波损耗测量装置
图1. 回波损耗测量装置

图1所示Dallas Semiconductor器件测量装置中,回波损耗测试桥路采用的是Wide Band Engineering, Inc.的A57TLSTD。两个50Ω/75Ω阻抗转换器(Wide Band Engineering的A65L)用来连接75Ω桥路与50Ω信号发生器、50Ω频谱分析仪端口。图1中桥路右侧的75Ω精密电阻是回波损耗测试桥路的一个部件。Advantest R3132频谱分析仪在图1中同时作为信号发生器和频谱分析仪。

在图1所示的装置中,信号发生器的频率范围为860kHz至51,550kHz,提供峰值为1V的正弦信号。

若要在测量回波损耗之前检查测试装置,电桥的NTP接口(图1左侧接口)应连接至75Ω (±0.25Ω)测试负载。在图1所示装置中,这个精密电阻是Wide Band Engineering回波损耗测试桥路的一个元件。用该电阻作为测试负载时,回波损耗应比表1所要求的回波损耗高20dB。

频谱分析仪的主要功能

测量回波损耗所需要的主要功能为以下六项:

  1. 频率设置

  2. 基准电平设置

  3. 带宽、扫描时间、触发控制设置

  4. 跟踪发生器设置

  5. 跟踪控制设置

  6. 利用标记功能测量回波损耗(以dB为单位)

频率设置

下述步骤用来设定频谱分析仪的频率范围:

  1. 按下前面板的FREQ键。

  2. 按下软键#2 (Start),用数字小键盘配合单位键(GHz、MHz、kHz或Hz)输入起始频率。由表1和表2可知,输入端口和输出端口的起始频率均为860kHz,如图2所示。

    图2. 设置起始频率为860kHz
    图2. 设置起始频率为860kHz

  3. 按下软键#3 (Stop),用数字小键盘配合单位键(GHz、MHz、kHz或Hz)输入截止频率。由表1和表2可知,输入端口和输出端口的截止频率均为51.55MHz,如图3所示。

    图3. 设置截止频率为51.55MHz
    图3. 设置截止频率为1.55MHz

  4. 其余设置可以采用缺省值。

基准电平设置

下述步骤用来设定频谱分析仪的基准电平:

  1. 按下前面板的LEVEL键。

  2. 按下软键#2 (ATT),选择AUTO。

  3. 按下软键#3 (dB/div),选择dB/div显示方式。选择软键#1 (10dB/div)作为每刻度对应的分贝值,如图4所示。然后按RETURN键。

    图4. 选择10dB/div作为每刻度对应的分贝值
    图4. 选择10dB/div作为每刻度对应的分贝值

  4. 按下软键#5 (Units)并选择软键#1 (dBm)作为期望的显示单位,如图5所示,然后按RETURN键。

    图5. 选择dBm作为显示单位
    图5. 选择dBm作为显示单位

  5. 按下软键#1 (Ref Level),用数字小键盘输入期望的基准电平。也可用旋钮选择所期望的电平。我们使用0.1dBm来测量回波损耗。

  6. 其余设置可以采用缺省值。

带宽、扫描时间和触发控制设置

下述步骤用来设定频谱分析仪的带宽、扫描时间和触发控制:

  1. 按下CONTROL板的BW键。

  2. 按下软键#7 (Auto All),自动设置分辨率和视频带宽。

  3. 按下CONTROL板的SWEEP键。

  4. 按下软键#2 (Auto All),自动设置扫描时间。

  5. 按下软键#6 (Gated Sweep),选择OFF。

  6. 按下软键#7 (Ext Gate In),选择OFF。

  7. 按下CONTROL板的TRIG键。

  8. 按下软键#1 (Trig Source),选择Free Run并单击RETURN键。

  9. 其余设置可以采用缺省值。

跟踪发生器设置

下述步骤用来设定频谱分析仪的跟踪发生器输出:

  1. 按下前面板的TG键。

  2. 按下软键#1 (TG Level),用数字小键盘配合单位键(+dBm或-dBm)输入所要求的输出信号电平值。可使用旋钮调整输出信号电平。我们使用0.0dBm来测量回波损耗。

  3. 按下软键#4 (Ref Line,设置基准电平对输入信号进行归一化处理。用数字小键盘配合单位键(+dBm或-dBm)输入所要求的基准电平。可使用旋钮调整输出信号电平,我们使用-20dBm来测量回波损耗。

  4. 按下软键#3 (Norm Corr),选择OFF。禁止归一化处理,可在下一步骤中保存一组新的校准数据。

  5. 按下软键#2 (Execute Normalize),保存校准数据并将输入信号归一化到基准电平。

  6. 其余设置可以采用缺省值。

跟踪控制设置

下述步骤用来设定频谱分析仪的跟踪振荡器:

  1. 按下CONTROL板的TRACE键。

  2. 按下软键#1 (Write A),显示输入信号轨迹。

  3. 按下软键#5 (Detector),选择期望的信号轨迹检测方式(Normal、Posi、Negi或Sample)。Normal同时显示正峰值和负峰值;Posi只显示正峰值;Negi只显示负峰值;Sample显示当前的信号轨迹。为了测量回波损耗,选择软键#4 (Sample),如图6所示,然后单击RETURN键。 

    图6. 选择Sample方式显示当前信号轨迹
    图6. 选择Sample方式显示当前信号轨迹

  4. 按下软键#7 (1/2,more)显示下一个软键的设置。选择软键#1 (AVG A),保持它在ON模式,按下RETURN键。再次按软键#7 (2/2,more)返回到软键的初始设置。

  5. 其余设置可以采用缺省值。

测量回波损耗(以dBm为单位)

  1. 按下MARKER板上的MEAS键。

  2. 按下图7所示软键#1 (Noise/Hz)。 

    图7. 为回波损耗测量选择Noise/Hz
    图7. 为回波损耗测量选择Noise/Hz

  3. 按下软键#1 (dBm/Hz)。

    图8. 为回波损耗测量选择dBm/Hz
    图8. 为回波损耗测量选择dBm/Hz

  4. 按下软键#7 (Noise/Hz OFF),如图8所示。

  5. 将75Ω负载接入测试桥路,测量其dB值。

    图9. 带有75Ω负载的回波损耗
    图9. 带有75Ω负载的回波损耗

  6. 按下MARKER板的MKR键,然后利用旋钮选择要测量的频率值,测量该频率处的回波损耗,如图9所示。

  7. 连接被测器件(DUT)和测试桥路,利用旋钮选择要测量的频率值,测量该频率处的回波损耗。我们将测量860kHz、1.720MHz、34.3680MHz和51.55MHz处的回波损耗。使用旋钮选择这些频率的某一个值。用户也可以选择自己感兴趣的频率并测量回波损耗。

  8. 测量被测器件(DUT)在860kHz处的回波损耗,如图10所示。

    图10. 被测器件(DUT)在860kHz处的回波损耗
    图10. 被测器件(DUT)在860kHz处的回波损耗

  9. 测量被测器件(DUT)在1.72MHz处的回波损耗,如图11所示。

    图11. 被测器件(DUT)在1.72MHz处的回波损耗
    图11. 被测器件(DUT)在1.72MHz处的回波损耗

  10. 测量被测器件(DUT)在34.368MHz处的回波损耗,如图12所示。 

    图12. 被测器件(DUT)在34.37MHz处的回波损耗
    图12. 被测器件(DUT)在34.37MHz处的回波损耗 

  11. 测量被测器件(DUT)在51.35MHz处的回波损耗,如图13所示。

    图13. 被测器件(DUT)在51.35MHz处的回波损耗
    图13. 被测器件(DUT)在51.35MHz处的回波损耗

关键字:Advantest  R3132  频谱分析仪  回波损耗 引用地址:利用Advantest R3132频谱分析仪测量回波损耗

上一篇:基于单片机的音频信号分析仪的设计
下一篇:荧光免疫分析仪的核心板解决方案

推荐阅读最新更新时间:2024-11-17 01:39

EMC接收机与频谱分析仪的区别分析
在EMC测试设备选型时,常遇到这样的问题:EMI接收机与频谱仪到底有何不同,为何EMI测试要选用接收机?本文依据CISPR16-1(GB/T6113)和GJB152,对于接收机的测试原理进行剖析,分析接收机与频谱测试设备的选择提供参考-符合标准的接收机是EMC合格评定测试的唯一选择。文章介绍了接收机与频谱分析仪的差异。 接收机和频谱分析仪的原理差异 频谱分析仪是当前频谱分析的主要工具,尤其是扫频外差式频谱分析仪是当今频谱仪的主流,应用扫频测量技术,通过扫频信号源得到外差信号进行频域动态分析。 接收机是进行EMC测试的主要工具,以点频法为基础,应用本振调谐的原理测试相应频点的电平值。接收机的扫描模式应当是以步进点频调谐的方式得到
[测试测量]
基于FPGA平台的手持式频谱分析仪的设计原理
  频谱分析仪可以方便设计人员确定干扰信号的频率范围,以便选择合理的滤波方案,但一般的频谱分析仪体积较大,不便于工业现场使用,因此设计手持式频谱分析仪,便于携带,功耗低,可长时间记录数据,还可通过网络远程操作。   本频谱仪的设计是以赛灵思的FPGA为核心,先在模拟前端驱动可编程放大器完成模拟信号的放大及电平迁移,然后按设定的采样频率驱动ADC完成数据采集,之后完成快速傅立叶变换,最后将结果显示在4寸彩色液晶屏上,并按设定存储数据或是通过网络传输数据。   频谱分析在生产实践和科学研究中有着广泛的应用。所谓频谱分析就是将信号源发出的信号强度按频率顺序展开,使其成为频率的函数,并考察变化规律。对于一个电信号的研究,我们可以分
[测试测量]
基于FPGA平台的手持式<font color='red'>频谱分析仪</font>的设计原理
无线实时频谱分析仪的新特性简介
无线设备在工作时可能会出现周期性地挂起,干扰其他消费电子产品的工作(例如电台),或者无法完全发挥应有的功能,这些问题都会使消费者对它的技术水平和相应的产品供应商丧失信心。 为了避免这种糟糕的情况,选择一种能够满足当今无线产品设计与调试需求的高性能频谱分析仪是至关重要的,这种频谱分析仪不仅要能够检验产品的真实性能,也要能够检测高度集成的无线发射器的功能。 1 无线技术的挑战 在过去几年中,用户所接触的产品功能越来越强大,其目的在于在移动电话这种单一设备中集成多种方便实用的技术,从而增强用户的多功能体验。新的高速数据技术,例如HSDPA/HSUPA和A版本的1xEV-DO,能够为用户提供更强大的功能,例如广播视频和高速E-ma
[测试测量]
频谱分析仪之信号分析测量-优化本底噪声、分辨率带宽
对射频工程师来说,在其产品生命周期的各个阶段,都会用到一种基本而又不可或缺的测量工具:频谱分析仪或信号分析仪。仪器的关键指标,比如性能、精度和速度等,可协助研发工程师提升设计质量,并有助于制造工程师提高测试效率和产品质量。本文提供了多种技术方法,旨在帮助您轻松驾驭各种应用场景中的信号分析。重点是在保证速度和效率的前提下,协助您优化测量本底噪声、分辨率带宽、动态范围、灵敏度等属性。 “信号分析仪”通常是指具有以下特征的仪器:采用频谱分析仪架构和全数字中频(IF)区段,以复杂矢量方式处理信号,实现数字调制分析与时间捕获等多域操作。关于频谱分析仪、信号分析仪,以及它们的使用方法,可参阅是德科技应用指南 150: 《频谱分析基础》 。
[测试测量]
一种基于MSP430的FM音频频谱分析仪的设计方案
频谱分析在教学科研和生产实践中都有着非常广泛的应用,显示的是信号频率和功率的关系,广泛应用于电子对抗、移动通信和广播电视等领域。调频广播的音频范围在30Hz~15KHz,音频质量的好坏影响了调频广播发射机整体的指标。因此,本文对调频广播的输入音频进行频谱分析,从而提出了一种基于MSP430的FM音频频谱分析仪的设计方案,利用MSP430处理器的优势来对音频频谱进行调整和改进。 1.前言 在实际的广播电视发射工作中,新的发射机的进场测试,发射机的日常指标测试等都涉及了音频的测试。本文设计的音频频谱分析仪就是从信号源的角度出发,测量音频信号的频谱,从而确定各频率成分的大小,为调频广播的各项音频指标的提供参考。 在本文中主要提出了以M
[单片机]
一种基于MSP430的FM音频<font color='red'>频谱分析仪</font>的设计方案
基于软件定义无线电的实时频谱分析仪功能概述(三)RF接收器前端
RF接收器前端和捕获控制器功能框图中的接收器部分显示了虹科HK-R5550中RFE的框图,该体系结构由一个超外差(SH)前端和一个后端组成,该后端利用了与直接转换(或零中频)接收器类似的I/Q混频器。 根据要分析的信号的频率来选择三个接收器信号处理路径其中之一,频率范围为9kHz至50MHz的信号被直接数字化,而所有其他信号则通过其他两个信号处理路径中的一个转换为第一个IF块的频率。IF模块由一组多个SAW滤波器组成,SAW滤波器的选择取决于输入信号的频率,SAW滤波器的输出馈入I/Q混频器。 这三种信号处理路径进一步分为捕获引擎的不同操作模式,射频前端模式 ZIF、SH、SHN和HDR支持中心频率在50MHz到特定产品模
[测试测量]
基于软件定义无线电的实时<font color='red'>频谱分析仪</font>功能概述(三)RF接收器前端
接收机与频谱分析仪的区别
在EMC测试设备选型时,常遇到这样的问题:EMI接收机与频谱仪到底有何不同,为何EMI测试要选用接收机?本文依据CISPR16-1(GB/T6113)和GJB152,对于接收机的测试原理进行剖析,分析接收机与频谱测试设备的选择提供参考-符合标准的接收机是EMC合格评定测试的唯一选择。 接收机和频谱分析仪的原理差异 频谱分析仪是当前频谱分析的主要工具,尤其是扫频外差式频谱分析仪是当今频谱仪的主流,应用扫频测量技术,通过扫频信号源得到外差信号进行频域动态分析。 接收机是进行EMC测试的主要工具,以点频法为基础,应用本振调谐的原理测试相应频点的电平值。接收机的扫描模式应当是以步进点频调谐的方式得到的。 a.基本原理图 根据工作原
[模拟电子]
接收机与<font color='red'>频谱分析仪</font>的区别
小广播
最新测试测量文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved