示波器的FFT能解决什么问题?

发布者:馥睿堂最新更新时间:2019-12-04 来源: elecfans关键字:示波器  FFT  频谱分析 手机看文章 扫描二维码
随时随地手机看文章

本文将教你用五种方法把示波器上的FFT做成极致!


一、示波器上的FFT是什么?

二、示波器的FFT能解决什么问题?

三、示波器的FFT 经常变成用户手里的鸡肋,问题在哪?

四、我们把示波器上的频谱分析功能做到极致,怎么做到的?

五、示波器上的频谱分析功能发展趋势!


一、有了数字示波器,我们对波形的处理就不在单纯了,不再只是停留在看看波形形状,不再满足只是测量几个参数了。


我们总想着对采下来的数据做更多的处理,示波器更准确的理解,它更像一个波形分析仪正是工程师的不满足,才有我们不断追求推动极限的动力,因为我们经常低估我们的潜力,极限到底在哪? 到底是谁最先把FFT(快速傅里叶变换)用在数字示波器里边呢,说法很多。


好像突然间,大家在示波器上都发现有FFT功能了,而且都是标准配置,虽然都有这个功能,但是做成的结果千差万别,速度和指标也都各不相同,任何事情开始阶段都相同,都先追求有,再谈差异化。况且示波器本身是个定性的工具,谁又在乎示波器在频域上的指标精度呢,除了我们可爱的研发工程师。


情况在变化,很多时候用户希望通过一个仪器来解决所有问题,因为说实话,很多工程师没有条件在桌上摆上电位计,频谱仪,示波器,矢网。多数情况,示波器把采集下来的时域数据样本,进行软件fft运算,变成频域的样本,再通过数据重组,把频域的样本显示出来。

“”

fft 的能力取决于一下几个指标: 存储器大小,软件运算速度,动态有效位ENOB,底噪。因为这些指标直接决定fft后的刷新速度,动态范围,灵敏度,分辨率带宽RBW。


二、示波器的fft 能解决什么问题呢?

受限于手头的工具(所有工程师都梦想桌上摆着最先进的示波器和频谱仪),而且很多时候工程师调试电路时候需要先定性观察一下,fft就成了看频谱的好工具了。


说实话,很多厂商fft功能都做得差强人意,无非两类原因,一类是不具备做好的能力,把频谱分析做好还是需要很多DSP 高手和射频技术实力的;还有一类是能做好,但是主观上又不太想把fft 做的太强,做得太好,那我频谱仪怎么卖啊,这里有个机会成本的问题。

但是fft还是能解决些问题的,比如看看谱性范围,看看谐波成分,看看谐波占比,粗略看看频谱干扰等等,但往往也会带来些尴尬问题,比如采样芯片是由多片叠拼时候,就会暴露叠拼的谱线,处理速度慢得也会让人崩溃,底噪有点太离谱,抖动分量占比有点乱,回避这些问题当然会想出些些好方法,比如限制fft 分析样本,这样不至于长存储fft 时死机,比如波形平均降低些底噪等等。


三、示波器的fft是鸡肋吗?

不能不说,有时候真是鸡肋,处理速度太慢,稍微大一点样本就跟死机差不多,RBW太离谱,谐波抑制比很差,噪声还经常把谐波淹没,动态范围也差得不行。但其实我们的很多场合,如果fft 功能足够好的话,就不是鸡肋,是鸡腿了。比如,测试滤波器和系统的脉冲响应(特性曲线),分辨和定位噪声干扰源,确定乱真辐射,抖动分析,谐波功率分析,EMI 分析。这么看fft大有用武之地啊。


四、我们把示波器上的频谱分析功能做到极致,怎么做到的?

首先要把频谱分析的速度提高上去,实时刷新,所以你看不再忍受示波器fft 变换时候类似死机一般,其次我们把RBW做到了高达1Hz,这个水平几乎只有频谱仪才能做到啊,我们的界面设计和频谱仪的操作一摸一样,中心频率,频谱范围,起始频谱,截止频率,RBW设置,窗函数设置,把频谱仪的设置几乎全部移植过来了。下面从四个方面论证我们怎么把fft功能做到极致的:


1、专用数字下变频器DDC

传统的做法是,示波器把信号样本采集下来,然后通过软件算法来进行软件运算,速度非常慢,我们的方式通过专用的硬件加速集成电路(ASIC),把fft功能交给这个硬件电路来实现,速度快到几乎不影响原始波形的刷新速率。当然这个ASI 是需要花大把银子来研发的。核心对比用到了专用的DDC电路。

我们看看传统示波器怎么fft的

“”

我们的示波器fft原理

“”

上图的对比可以看出来,在窗函数之前会进行一个DDC处理,通过用户设置中心频率,设置初始和截止频率,处理的结果是只对关心的频段,或者说设定好的频段进行处理。传统方式必须对所有频段范围的进行fft 运算,然后选择一段频率来显示,运算的数据量非常大。


反过来我们的原理是仅对你感兴趣的频段或者你选择的初始频率和截止频率范围内进行处理,当然极限情况也是选择全频段来处理,这样就有机会减少数量量的处理,把处理能力集中在DDC 之后的范围内。下面两张图更加清晰告诉传统方式和我们方式的区别。

“”

“”

这种方式带来两个好处:

a) 更快的速度,变频到基带处理会带来更高的更新速率和更快的处理速度,节省处理时间。

b) 更好的分辨率带宽,因为会用到更好的放大因素。


2、硬件加速器的使用

在传统方案里边,一直用软件处理来实现的,比如统计直方图功能,模板测试功能,fft功能。在RS 示波器中,全部用硬件专用电路来实现,把处理器解放出来,所以在做直方图功能,模板测试功能,或者是异常消耗资源的fft功能,依然保持很高的刷新速率,通常都超过60,000次/s,这个速度,都超过市场上所有示波器不做任何运算时候的刷新速度。这样能保证做复杂波形分析时候,仍然很高的刷新速率,高刷新率保证了实时频谱的快速显示速率。


3、交叠fft 的算法应用

传统的示波器fft 运算方式,采集一段,处理一段,接着采集,接着处理。

“”

所以,连续间断采集,连续处理,但是偶发信号的频谱也是很容易就丢了,发现不了。

“”

RS 的示波器在对采集的样本进行片段处理,把一次采集的信号分成很多小段进行处理,这样能看到一次采集里边的频谱内容变化。

但是光分片段处理还不能避免丢失,因为在fft 运算之前,已经有窗函数的处理,不可避免的在相邻两帧的位置有频谱信息丢失,所以我们采取了另外一种更加创新的方法,运用了fft 的交叠算法,极大地提高的窗函数的影响,以及异常频谱的丢失。

“”

借助模拟余辉的显示,实时频谱的显示更加可靠和置信。

“”

好处小结:

a) 有利于异常信号的监测

b) 显示短期出现的罕见的事件

c) 提高的频谱的刷新率(因为在一帧的fft 做完之前,新的一帧的fft 已经开始)

d) 在一个fft 帧里可以区分多个频谱事件


4、类似传统频谱仪的控制界面和操控方式

以前的示波器操控方式,无非是通过调整采集时间的长度来影响分辨率带宽,然后选择感兴趣的频段来进行观察。


现在做法是先选择中心频率,或者选择好起始和截止频率,通过直接调整RBW 来调整频谱观察方式,让习惯频谱仪的用户也习惯示波器了。

“”

还有一个表格帮助理解什么情况下用什么窗函数。

“”

5、借助模板方式,实现频域的触发设置

很多用惯了示波器的人都喜欢示波器的触发功能,用各种触发方式来隔离各种事件,稳定显示,观察异常。在传统频谱仪上是很难实现触发的,但是当我们发现示波器的模板触发方式,很容做到,把时域波形的实时频谱变到频域来观察,借助MASK 测试的一些小工具,居然轻松设置和轻松触发。


因为模板的形状自由编辑,触发的动作自由组合,这样的波形分析已经完全跨越的时域和频域的使用习惯,完全融合了时域和频域对信号的思维方法了。

“”

红色模板区域触发实例


五、示波器上的频谱分析发展趋势

示波器的分析速度越来越快,算法越来越科学,存储深度越来越大,fft 功能不再像以前可有可无了,频谱分析的能力取决于fft 能力,取决于动态范围,取决于噪声大小。

示波器的原理做的频谱分析,需要增加动态范围,无非是在fft 之前做一些时域平均,降低噪声,或者增加存储深度,提高RBW,降低异步噪声,达到提高动态范围的目的。

关键字:示波器  FFT  频谱分析 引用地址:示波器的FFT能解决什么问题?

上一篇:ZDS3024电源测试定制版示波器路测试结果分析
下一篇:鼎阳SDS1102X示波器拆解分析

推荐阅读最新更新时间:2024-11-03 16:10

电源纹波噪音测试方法,全面解析预防措施
电子电路(比如手机、服务器等领域)的切换速度、信号摆率比以前更高,同时芯片的封装和信号摆幅却越来越小,对噪音更加敏感。因此,电路设计者们更关心电源噪音的影响。实时示波器是用来进行电源噪音测量的一种常用工具,但是如果使用方法不对可能会带来完全错误的测量结果,PRBTEK在和用户交流过程中发现很多用户的测试方法不尽正确,所以把电源纹波噪音测试中需要注意的一些问题做一下总结,供大家参考。 由于电源噪音带宽很宽,所以很多人会选择示波器做电源噪音测量。但是不能忽略的是,实时宽带数字示波器以及其探头都有其固有的噪音。如果要测量的噪音与示波器和探头的噪音在相同数量级,那么要进行精确测量将是非常困难的一件事情。 示波器的主要噪音来源于2个
[测试测量]
电源纹波噪音测试方法,全面解析预防措施
使用频谱分析仪容易犯的错误分析
当设备不能满足有关的电磁兼容标准时,就要对设备产生超标发射的原因进行调查,然后进行排除。在这个过程中,经常发现许多人经过长时间的努力,仍然没有排除故障。造成这种情况的原因是诊断工作陷入了 死循环 。这种情况可以用下面的例子说明。 假设一个系统在测试时出现了超标发射,使系统不能满足电磁兼容标准中对电磁辐射的限制。经过初步调查,原因可能有4个,它们分别是: 主机与键盘之间的互连电缆(电缆1)上的共模电流产生的辐射 主机与打印机之间的互连电缆(电缆2)上的共模电流产生的辐射 机箱面板与机箱基体之间的缝隙(开口1)产生的泄漏 某显示窗口(开口2)产生泄漏 在诊断时,首先在电缆1
[测试测量]
如何使用模拟示波器检测信号发生器输出信号
如何使用模拟示波器检测信号发生器输出信号,今天 仪表 工作在线的陈工与大家简单讲解下,使用模拟示波器检测信号发生器输出信号的操作方法: 1、首先连接好信号发生器电源,打开信号发生器的电源开关,此时信号发生器的指示灯亮,信号发生器启动。 2、下面我们进行示波器的探头连接,这里选择CH2通道,将探头插入CH2通道,并顺时针旋转,使探头与示波器连接牢固。 3、再将电源线一端连接示波器,另一端与接线板连接,此时注意,在开机之前经电源电压选择开关调至交流220V位置,确保使用时,有适当的电压为示波器供电。 4、当我们接通好电源线后,安县电源开关按钮,电源指示灯亮,大约10s后,示波器显示屏上显示出一条水平亮线。若开机后,屏幕显示扫描线不
[测试测量]
几种主要的电子测量仪器的分类及其应用
1.示波器 示波器是一种测量电压波形的电子仪器,它可以把被测电压信号随时间变化的规律,用图形显示出来。使用示波器不仅可以直观而形象地观察被测物理量的变化全貌,而且可以通过它显示的波形,测量电压和电流,进行频率和相位的比较,以及描绘特性曲线等。 2.信号发生器 信号发生器(包括函数发生器)为检修、调试电子设备和仪器时提供信号源。它是一种能够产生一定波形、频率和幅度的振荡器。例如:产生正弦波、方波、三角波、斜波和矩形脉冲波等。 3.晶体管特性图示仪 晶体管特性图示仪是一种专用示波器,它能直接观察各种晶体管特性曲线及曲性簇。例如:晶体管共射、共基和共集三种接法的输入、输出特性及反馈特性;二极管的正向、反向特性;稳压管的稳压或齐纳
[测试测量]
无线实时频谱分析仪的新特性简介
无线设备在工作时可能会出现周期性地挂起,干扰其他消费电子产品的工作(例如电台),或者无法完全发挥应有的功能,这些问题都会使消费者对它的技术水平和相应的产品供应商丧失信心。 为了避免这种糟糕的情况,选择一种能够满足当今无线产品设计与调试需求的高性能频谱分析仪是至关重要的,这种频谱分析仪不仅要能够检验产品的真实性能,也要能够检测高度集成的无线发射器的功能。 1 无线技术的挑战 在过去几年中,用户所接触的产品功能越来越强大,其目的在于在移动电话这种单一设备中集成多种方便实用的技术,从而增强用户的多功能体验。新的高速数据技术,例如HSDPA/HSUPA和A版本的1xEV-DO,能够为用户提供更强大的功能,例如广播视频和高速E-ma
[测试测量]
英国比克科技推出新一代采样器扩展实时示波器
英国比克科技(Pico Technology)今天推出 PicoScope 9404 SXRTO(新一代采样器扩展实时示波器)。9404 型号具有四个5 GHz模拟带宽、12 位ADC、每个通道支持高达 500 MS/s 的实时采样和1 TS/s (1 ps) 的等效时间采样。无论是垂直电压分辨率,还是时间分辨率规格都是高性能宽带示波器的特性。 宽带输入以及高时间分辨率和电压分辨率可显示和精确测量快达 70 ps 的切换、时钟性能和千兆比特速率信号的眼图分析。小于 2 ps RMS 的触发抖动和 5 GHz 的内部触发支持当今高速串行数据系统的容限分析和特征描述以及无线通信频率的测量如应用广泛的 900MHz 和 2.
[半导体设计/制造]
英国比克科技推出新一代采样器扩展实时<font color='red'>示波器</font>
示波器的制作图解
步骤1:您需要什么? 1)LinkitONE板 2)微型USB电缆(至程序板) 3)要测试的传感器很多! (我正在使用声音传感器,PIR运动传感器,空气质量传感器,DHT温度传感器,灰尘传感器等)。 第2步:连接传感器 在这里,您应该选择任何可以提供模拟读数的传感器。您可以使用世界上任何可用的模拟传感器!!! 声音传感器,光传感器,土壤湿度传感器,触摸传感器!!!更! 第3步:编写一些代码 这里的代码非常简单!没什么! 我们只是从传感器获取模拟读数,然后将其发送到计算机。然后计算机中的程序会将数据转换为实时图形。 代码: -------- ---- #define ANALOG_IN 1 vo
[测试测量]
<font color='red'>示波器</font>的制作图解
是德科技推出先进的14-bit精密示波器,适用于各种普遍的应用场景
14-bit 模数转换器 (ADC) 示波器相比于其他的通用示波器而言,信号分辨率是其四倍以上,而本底噪声不到后者的一半 仪器采用定制的专用集成电路和深度内存架构,可提供快速、准确的测量结果 可提供在设计调试期间内识别小幅度和罕见信号故障所需的精度和准确性,加快产品上市时间 是德科技推出 14-bit模数转换器 (ADC) 示波器 InfiniiVision HD3 系列 ,其信号分辨率是其他通用示波器的四倍以上,本底噪声不到后者的一半。HD3 系列经过全新设计,采用定制的专用集成电路 (ASIC) 和深度内存架构,使工程师能够在各种应用中快速检测和调试信号问题。 是德科技InfiniiVision HD3 系
[测试测量]
是德科技推出先进的14-bit精密<font color='red'>示波器</font>,适用于各种普遍的应用场景
小广播
最新测试测量文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved