什么样的示波器适合你?

发布者:VelvetSoul最新更新时间:2019-12-14 来源: elecfans关键字:示波器  典型性能  电子测试仪器 手机看文章 扫描二维码
随时随地手机看文章

示波器自从问世以来,它一直是最重要、最常用的电子测试仪器之一。由于电子技术的发展,示波器的能力在不断提升,其性能与价格也五花八门,市场参差不齐。示波器看似简单,但如何选择,也存在许多问题。本文根据多年的经验,结合北京海洋兴业科技有限公司选型指南,从几个方面告知您在选择示波器时应注意的问题:

一、了解您需要测试的信号


您要知道用示波器观察什么?您要捕捉并观察的信号其典型性能是什么?您的信号是否有复杂的特性?您的信号是重复信号还是单次信号?您要测量的信号过渡过程的带宽,或者上升时间是多大?您打算用何种信号特性来触发短脉冲、脉冲宽度、窄脉冲等?您打算同时显示多少信号?您对测试信号作何种处理?


二、选择示波器的核心技术差异:模拟(DRT)、数字(DSO)、还是数模兼合(DPO)

传统的观点认为模拟示波器具有熟悉的控制面板,价格低廉,因而总觉得模拟示波器 “ 使用方便 ” 。但是随着 A/D 转换器速度逐年提高和价格不断降低,以及数字示波器不断增加的测量能力和实际上不受限制的测量功能,数字示波器已独领风骚。但是数字示波器显示具有三维的缺陷、处理连续性数据慢等缺点,需要具有数模兼合技术的示波器,例 DPO 数字荧光示波器。
    
三、确定测试信号带宽


带宽一般定义为正弦波输入信号幅度衰减到 -3dB 时的频率,即幅度的70.7% 。带宽决定示波器对信号的基本测量能力。如果没有足够的带宽,示波器将无法测量高频信号,幅度将出现失真,边缘将会消失,细节数据将被丢失;如果没有足够的带宽,得到的信号所有特性,包含响铃和振鸣等都毫无意义。


一个决定您所需要的示波器带宽有效经验—— “5倍经验准则”:将您要测量的信号最高频率分量乘以5,使测量结果获得高于2%的精度。


在某些应用场合,您不知道你的感兴趣的信号带宽,但是您知道它的最快上升时间,这时频率响应用下面的公式来计算关联带宽和仪器的上升时间: Bw=0.35/信号的最快上升时间。


数字示波器带宽有两种类型:重复(或等效时间)带宽和实时(或单次)带宽。重复带宽只适用于重复的信号,显示来自于多次信号采集期间的采样。实时带宽是示波器的单次采样中所能捕捉的最高频率,且当捕捉的事件不是经常出现或瞬变信号时就更为重要,实时带宽与采样速率紧密联系。


带宽越高越好,但是更高的带宽往往意味着更高的价格,因此应按照预算来选择您要观察的信号频率成分。


四、A/D转换器的采样速率(或采样速度)

单位为每秒采样次数( S/s ),指数字示波器对信号采样的频率。示波器的采样速率越快,所显示的波形的分辨率和清晰度就高,重要信息和事件丢失的概率就越小。

如果需要观测较长时间范围内的慢变信号或低频信号,最小采样速率就发挥了作用,为了在显示的波形记录中保持固定的波形数,需要调整水平控制旋钮,而所显示的采样速率也将随着水平调节旋钮的变化而变化。


如何计算采样速率?计算方法取决于所测量的波形类型,以及示波器所采用的信号重建方式,例正弦插入法,矢量插入法等。为了准确地再现信号并避免混淆,奈奎斯定理规定:信号的采样速率必须不小于其最高频率成分的两倍。然而,这个定理的前提是基于无限长时间和周期连续的信号。由于示波器不可能提供无限时间的记录长度,而且从定义上看,低频干扰是不连续的,也不是周期的,所以采用两倍于最高频率成分的采样速率通常是不够的。


实际上,信号的准确再现取决于其采样速率和信号采样点间隙所采用的插值法,即波形重建。一些示波器会为操作者提供以下选择:测量正弦信号的正弦插值法,以及测量矩形波、脉冲和其他信号类型的线性插值法。


有一个比较采样速率和信号带宽时很有用的经验法则:如果您正在观察的示波器有内插(通过筛选以便在取样点间重新生成),则(采样速率 / 信号带宽)的比值至少应为 4∶1 ;无正弦内插时,则应采取 10∶1 的比值。


五、屏幕刷新率也称为波形更新速度

所有的示波器都会闪烁,示波器每秒钟以特定的次数捕获信号,在这些测量点之间将不再进行测量,这就是波形捕获速率,也称屏幕刷新率,表示为波形数每秒( wfms/s )。一定要区分波形捕获速率与A/D采样速率的区别。采样速率表示示波器在一个波形或周期内A/D采样输入信号的频率 ; 波形捕获速率则是指示波器采集波形的速度。波形捕获速率取决于示波器的类型和性能级别,且有着很大的变化范围。高波形捕获速率的示波器将会提供更多的重要信号特性,并能极大地增加示波器快速捕获瞬时的异常情况,如抖动、矮脉冲、低频干扰和瞬时误差的概率。


一般来讲,模拟示波器由于电路简单,其屏幕刷新率较高,而数字存储示波器( DSO )使用串行处理结构每秒钟可以捕获 10 到 5000 个波形。为了改变数字示波器屏幕刷新率低的问题,数字荧光示波器采用并行处理结构,可以提供更高的波形捕获速率,有的高达每秒数百万个波形,大大提高了捕获间歇和难以捕捉事件的可能性,并能让您更快地发现信号存在的问题。


六、选用适当的存储深度,也称记录长度

存储深度是示波器所能存储的采样点多少的量度。如果您需要不间断的捕捉一个脉冲串,则要求示波器有足够的存储器以便捕捉整个事件。将所要捕捉的时间长度除以精确重现信号所须的采样速率,可以计算出所要求的存储深度。


存储深度与采样速率密切相关。您所需要的存储深度取决于要测量的总时间跨度和所要求的时间分辨率。


现代的示波器允许用户选择记录长度,以便对一些操作中的细节进行优化。分析一个十分稳定的正弦信号,只需要 500 点的记录长度;但如果要解析一个复杂的数字数据流,则需要有一百万个点或更多点的记录长度。


在正确位置上捕捉信号的有效触发,通常可以减小示波器实际需要的存储量。


七、根据需要选择不同的触发功能

示波器的触发能使信号在正确的位置点同步水平扫描,使信号特性清晰。触发控制按钮可以稳定重复的波形并捕获单次波形。


大多数用示波器的用户只采用边沿触发方式,如果拥有其它触发能力在某些应用上是非常有用的,特别是对新设计产品的故障查寻,先进的触发方式可将所关心的事件分离出来,找出您关心的非正常问题,从而最有效地利用采样速率和存储深度。


现今有很多示波器,具有先进的触发能力。触发能力主要围绕三个方面:①有关垂直方向的幅度,例瞬态尖峰触发、过脉冲或短脉冲触发等;②有关水平方向的与时间有关的触发,例脉冲宽度、窄脉冲、建立/保持时间等设定时间宽度的触发形式;③扩展和常规触发功能的组合能力,例对视频信号或其它难以捕捉的信号,通过时间和幅度组合设置触发条件进行触发。触发能力的提高,可以大提高测试过程的灵活性,并简化工作,尤其现今的示波器对数据总线的触发能力大大提高,例CAN,I2C等。


八、通道能力,包括通道数量和通道对地的悬浮能力和通道之间的隔离能力

您需要的通道数取决于您的应用,对于通常的经济型故障查寻应用,需要的是双通道示波器,然而要求观察若干个模拟信号的相互关系,将需要一台 4 通道示波器,许多工作于模拟与数字两种信号的系统工程师可以选择混合信号示波器(MSO),它将逻辑分析仪的通道计数及触发能力与示波器的较高分辨率综合到具有时间相关显示的单一仪器中。如果您测量三相电,可控硅等有源器件或线路,两端之间没有绝对的零点,即所谓的浮地信号,这时候从操作安全和精度出发,应选用隔离通道示波器;如果比较多通道的时序和相移,应选用两通道以上示波器,这时通道之间的隔离更显重要。


九、对异常现象的捕获

三个主要因素影响着示波器显示日常测试与调试中所遇到的未知和复杂信号的能力:屏幕刷新速率、波形捕获方式和触发能力。波形捕获模式有:采样模式、峰值检测模式、高分辨率模式、包络模式、平均值模式等。屏幕刷新速率指给您关于示波器对信号和控制的变化反应快慢,使用峰值检测有助于在较慢的信号中捕捉快速信号的峰值。


十、示波器的性能和指标

示波器的指标有很多:如垂直灵敏度、扫描速度、垂直精度、时间基准、垂直分辨率等等。示波器的性能取决品牌的质量,关键在于质量、稳定性和校准服务等。


十一、分析功能有助于您事半功倍

数字示波器的最大优点是它们能得到的数据进行测量,且按一下按钮即可实现各种分析功能。虽然可利用的功能因厂家和型号而异,但它们一般包括频率、上升时间、脉冲宽度等测量,有些示波器还提供很多分析模块,例FFT、功率分析、高级数学运算等超常功能。


十二、相应配套的附件和探头

容易忘记的一点是,当装上探头时,它就成为整个测试电路的一部分了,结果探头将造成电阻性、电容性和电感性负载,使示波器呈现出与被测对象不同的测量结果。因此,针对不同应用配有相应的探头,然后选择其中一种,使负载效应最小,使信号得到最精确的复现。由于 SMT 元件的发展,连接更困难,使用不同的附件满足特殊需要。详细见北京海洋兴业科技有限公司专业文章“走向更好的测量,合理地选择探头和附件”。


十三、示波器的操作性能

很显然,如果您不能访问各种功能,或者要花很多时间去学习它们,那么您的示波器将价值不大,适当的培训和中文操作界面会使您突破使用上的障碍。


十四、示波器的数据管理和通讯能力

对测量结果的分析非常重要。将信息和测量结果在高速通信网络中便捷地保存和共享变得日益重要。


示波器的互联性提供对结果的高级分析能力并简化结果的存档和共享。示波器通过各种接口( GPIB 、 RS-232 、 USB 或以太网)和网络通信模式提供一系列的功能和控制方式。


十五、示波器功能的扩展性

为了不断适应需求变化。示波器功能最好可以随机扩展:
    ○ 增加通道的内存以分析更长的记录长度
    ○ 增加面对具体应用的测量功能
    ○ 有一整套兼容的探头和模块,加强示波器的能力
    ○ 同通用第三方的 Windows 兼容的分析软件协同工作,例如 OIscope 示波器软件。
    ○ 增加附件,如电池组和机架固定件等。


总之,示波器的选择是一个看似简单而又是您很难处理的问题,市场上产品很多,并且技术各有差异,有时很难让您下决定。以上说明可能给您一些建议,采用上图的选择过程会对您更有益。根据多年经验,选择示波器有以下“经验法则”:


• ART模拟示波器,选择四要素:性价比(价格与产品质量品牌的比较优势)、测试带宽(5倍经验法则)、通道数量(2或4)、供应商能力(售后是否得到保证)。 
• DSO数字存储示波器,在测试信号带宽、示波器带宽、示波器实时采样率、示波器存储深度之间找到平衡,有以下经验可循:示波器带宽最好是信号带宽的5倍;示波器实时采样速率≥4倍示波器带宽;存储深度≥采样速率×要求最长保存时间。 
• DPO数模兼合示波器,在基本指标要求上与DSO一致,但需要引入二个能力:屏幕刷新率、波形触发与分析能力。 
• 特殊功能需求。①你如果需要到现场工作,并且需要电池供电,对仪器的体积要求很严,对仪器的功能除示波器测量外还需要其它测试(例万用表功能),您这时最好选用手持示波表(HSO)。②如果您在隔离或悬浮时,安全不能得到保障,并且需要分析功率、相移时,请选用隔离示波器(DIO),尤其是多通道的DIO。③如果您需要多通道的模拟与数字信号混合测试,您除了选用具有串行总线触发功能的示波器外,您最好选用MSO混合示波器。

关键字:示波器  典型性能  电子测试仪器 引用地址:什么样的示波器适合你?

上一篇:模拟示波器可以做什么,模拟示波器原理解析
下一篇:示波器的探头校准方法

推荐阅读最新更新时间:2024-11-02 07:02

simulink示波器参数设定实现输入脉冲频率可调输入显示
最近一直在做步进电机的模型,对于输入脉冲模块在MATLAB中是(pluse generator)他所产生的脉冲频率,如果设定好周期值则它的频率就是一个确定的输出。 在仿真过程中遇到的问题是,当我设定某个频率时,示波器显示的是该频率下的转矩波形,我想在频率逐渐增加的过程中实现转矩波形显示,显示出,步进电机在驱动频率增加的时候转矩是随着频率增加而减小的。并且想在MATLAB窗口中用plot实时显示。 具 体方法是设置示波器的参数。 1.修改该示波器参数,进入到data history,删除limit data,勾选save data to workspace,变量名x,格式array。 2.在MATLAB主界面(
[测试测量]
测试测量仪器发展新方向:多通道、多功能、多连接
测试和测量仪器随着时间而发展,但大多数关注都来自明显的性能改进,如测量带宽和动态范围。但是不太明显的改进,诸如通道数量,I / O接口速度和组合功能之类的次要规格,往往被市场所忽视,但这些因素对实际应用却起到了非常重要的作用以及最大的便利性。 八通道 几十年来,高频示波器提供了两个或四个通道。双通道示波器受模拟示波器的性能限制。数字示波器消除了阴极射线管及其显示限制,并开始支持到四个通道,并持续了数十年,直到组件的大小为额外的通道提供了空间。在过去的几年中,四家主要示波器供应商中的三家已将八通道示波器添加到了产品线中。拥有八个可用的模拟通道可打开整个测量应用范围。 需要四通道的最常见测量是三相功率,三相是多相交流配电系
[测试测量]
测试测量<font color='red'>仪器</font>发展新方向:多通道、多功能、多连接
8通道示波器加快处理速度
大多数嵌入式系统使用不止一根电源排线,许多使用4根或更多。单个IC,例如FPGA、DSP或微控制器,可能具有特定的时序要求。例如,一家芯片制造商可能推荐要在内核电压供电稳定之后,才会施加I/O供电电压。另一家制造商可能要求应在相对的规定时间内供电,以避免各个供电引脚上电压差拖长。处理器和外部存储器之间上电顺序可能也非常关键。 芯片制造商可能会规定特定电源必须以单顺序方式启动,以避免多个上电复位。这可能极具挑战性,因为涌入电流可能会对负载点稳压器提出很高的瞬态要求。在这种情况下,电源线启动形状与定时顺序一样重要。 一旦把各种芯片供电要求、整体供电、基准供电及其他IC多个负载点稳压器组合在一起,您会很快遇到七八根电源线。 使用4通道示
[测试测量]
8通道<font color='red'>示波器</font>加快处理速度
示波器探头使用时应注意的这些问题!
  示波器是我们电子专业相关人士做实验以及做项目用得比较多的仪器,下面给大家简单的介绍示波器探头使用时注意问题。   首先是带宽,这个通常会在探头上写明,多少MHz。如果探头的带宽不够,示波器的带宽再高也是无用,瓶颈效应。   另外就是探头的阻抗匹配。探头在使用之前应该先对其阻抗匹配部分进行调节。通常在探头的靠近示波器一端有一个可调电容,有一些探头在靠近探针一端也具有可调电容。它们是用来调节示波器探头的阻抗匹配的。如果阻抗不匹配的话,测量到的波形将会变形。调节示波器探头阻抗匹配的方法如下:首先将示波器的输入选择打在GND上,然后调节Y轴位移旋钮使扫描线出现在示波器的中间。检查这时的扫描线是否水平(即是否跟示波器的水平中线重合),如
[测试测量]
<font color='red'>示波器</font>探头使用时应注意的这些问题!
示波器高压差分探头的了解及常见测量方法
1.概述 探头的种类很多,其中高压差分探头在开关 电源 应用中十分广泛,然而很多工程师对差分探头的理解不是很深刻,市场上差分探头生产厂家也不少,性能指标各不相同,甚至相差甚远,造成测出的波形也不尽相同,工程师无法看到正确波形。本文将主要讲述什么是差分信号,差分信号的测量,高压差分探头的主要指标,优缺点和相关使用技巧,以及高压差分探头在开关电源的典型应用。 2.什么是差分信号 在讲解差分探头之前,先来了解差分信号。差分信号是互相参考,而不是参考接地的信号。例如,图1开关电源中半桥上下开关管(Q1,Q2管)中电压信号;图2多相电源系统中电压信号,以上信号在本质上是“漂浮”在地之上。 iframe id="iframe_0.2
[测试测量]
<font color='red'>示波器</font>高压差分探头的了解及常见测量方法
使用示波器进行功率测量必须知道的 7 大秘诀
第 1 个秘诀:通过计算平均值提高测量分辨率 在某些功率测量应用中,您需要测量大动态范围的值,同时还需要细致地调整分辨率,以测量参数的微小变化。除了使用高分辨率数字转换器之外,您也可以使用其他采集方法来降低随机噪声,增加测量的有效动态范围。例如求平均值和高分辨率采集。 求平均值要求测量的是重复信号。该算法对跨越多次采集的各时间段内的点求平均值。这样可以降低随机噪声,为您提供更卓越的垂直分辨率。 垂直分辨率每增加一位,需要计算多少平均值?答案是每计算 4 个样本平均值,便可将垂直分辨率增加 1 位。原理如下: 增加的位数 = 0.5 log2 N N = 计算平均值的样本数 例如,对 16 个样本求平均值,垂直
[测试测量]
使用<font color='red'>示波器</font>进行功率测量必须知道的 7 大秘诀
示波器探头基础系列之五《为什么进行差分测量?》
电压就是电位差 记住这一点非常重要:任何时候示波器进行任何电压测量都是在进行差分电压测量。根据定义,电压是测量两点之间电位差。 使用电压表的人很容易理解电压是两点之间电位差的概念:只使用一条电压表的引线是不能测量电压的,需要再将另一条引线连接到电压的另外一点,以提供参考点。在使用示波器时,我们有时会忘了示波器上显示的信号并不是简单的 该点上的信号 ,而实际上是该点上的电压,因为它与另外某个点电位不同。 有参考地 的测量 这个另外一的点通常是电路的地,一般假设其电压为零。例如,我们假设想使 图1:被测电路 图2 使用示波器连接的被测电路 用示波器测量图1中晶体管发射极的电压(参考接地)。这看上去可能是一条
[测试测量]
<font color='red'>示波器</font>探头基础系列之五《为什么进行差分测量?》
基于单片机的等效采样示波器设计
摘要:介绍了基于单片机系统的精密时钟发生电路对高频信号(1MHz~80MHz)进行等效采样的方法,设计并实现一个模拟带宽为1Hz~80MHz的简易数字示波器。 关键词:单片机 等效采样 数字示波器 在数字示波器技术中,常用的采样方法有两种:实时采样和等效采样。实时采样通常是等时间间隔的,它的最高采样频率是奈奎斯特极限频率。等效采样(Equivalent Sampling)是指对多个信号周期连续样来复现一个信号波形,采样系统能以扩展的方式复现频率大大超过奈奎斯特极限频率的信号波形。 1 总体设计 由于所设计的示波器输入频率范围较宽, 本系统采用了等效和实时两种采样方式。若输入频率小于1.25MHz,选用实时采样;反之,选用等效采样。
[测试测量]
小广播
最新测试测量文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved