了解下常用的测量功耗的手段

发布者:星际穿越最新更新时间:2020-12-08 来源: elecfans关键字:万用表  低功耗 手机看文章 扫描二维码
随时随地手机看文章

低功耗,是万物互联中极为重要的一个概念,绝大多数的物联网节点都需要使用电池供电,而只有正确测量无线模块的功耗,才能准确估算到底5年续航需要使用多大的电池,本文将为您讲解详细的测量方法。


在物联网的很多应用中,终端设备通常是电池供电,可用的电量有限。由于电池存在自放电,最差情况下实际使用电量只有标称电量的70%左右,如常用的CR2032纽扣电池,一节电池标称容量为200mAh,实际可能只有140mAh可以使用。


既然电池的电量如此有限,那么降低产品功耗就显得很重要了!下面就先了解下常用的测量功耗的手段,只有清楚了这些测量功耗的方法,才能进行产品功耗优化。


1功耗测量

无线模块的功耗测试主要在测量电流,这里又分为静态电流与动态电流两种不同的测试。在模块处于休眠或者待机状态时,由于电流不变化,保持一个静止的数值,我们称之为静态电流。这时候我们可以采用传统的万用表来进行测量,只需要在电源引脚串联一个万用表就可以得到所需要测量的数值,如图1所示。

图1 万用表测试

在测量模块正常工作模式的发射电流时,由于信号发射所需要的时间很短,整个电流是处于变化状态,我们称之为动态电流。万用表响应时间比较慢,很难捕捉到变化的电流,所以不能使用万用表测量,对于变化电流,需要使用示波器和电流探头进行测量,测量结果如下图。

图2 电流探头测量结果图

2电池使用时长计算

无线模块常有两种工作模式,工作模式和休眠模式,如下图3所示。

图3 平均电流

上文数据来源于ZLG LM400TU产品,按照上图所示,两个发送包之间的发送间隔为1000ms,计算平均电流:

也就是说,1秒内平均电流大约为2.4mA,如果使用一节CR2032供电,理想情况下可以大约使用83个小时,约3.5天。如果我们将工作时长延长为1个小时呢?类似的,可以通过上面的公式算出,1小时的平均电流仅为1.67uA。同样一节CR2032电池可以支持设备工作119760小时,约13年!从上述这两个例子比较看出,增加发送包之间的时间间隔,延长休眠时间,可以降低整机的功耗,使得设备能够更长久的工作。这也是为什么无线抄表行业的产品普遍使用年限很长,因为它们每天只发送一次数据。


3常见功耗问题与原因

为了保证产品的低功耗,除了增加包间隔时间,还有就是降低产品本身的电流消耗,也就是上面提及到的I_work和 I_sleep。正常情况下,这两个数值应该跟芯片数据手册一致,但如果用户使用不当,有可能出现问题。我们在测试模块的发射电流时,发现是否安装天线对测试结果有很大影响。在带天线测量的时候,某产品电流为120mA,但是如果拧掉天线,测试电流飙升到近150mA。这种情况下的功耗异常主要是由模块射频端失配,引起内部PA工作异常导致的。因此,我们建议客户在评估无线模块的时候,务必带载测试。


在前面的计算中,当发送间隔越来越长,工作电流占空比降越来越小,这时影响整机功耗的最大的因素就是I_sleep。I_sleep越小,产品续航时间也就越长了。这个数值一般都是与芯片数据手册接近,但是我们经常遇到客户反馈测试的休眠电流偏大,那是为什么呢?


这个问题往往是由MCU的配置引起的,一般的MCU单个IO口功耗就能达到mA级别。换句话说,如果不小心漏掉或者错配一个IO口的状态,很有可能就将破坏前期的低功耗设计。下面以某产品为例进行一个小实验,看看这个问题影响有多大。

图4 产品A的低功耗IO配置测试结果

图5 产品A的IO配置不当测试结果

在图4和图5的测试过程中,测试对象是同一个产品,同样配置为模块休眠模式,可以很明显看到测试结果的不同。在图4中,所有IO都配置为输入下拉或者上拉,测试出来的电流仅为4.9uA,而图5中,仅仅把其中两个IO配置为浮空输入,测试结果为86.1uA。


如果保持图3的工作电流和时长不变,发送间隔为1个小时,带入不同的休眠电流计算。按照图4的结果计算,一个小时的平均电流为5.57uA,而按照图5则为86.77uA,相差约16倍。同样使用一节200mAh的CR2032电池供电,产品按照图4的配置,可以正常工作时间约为4年,而按照图5配置,这个结果仅为3个月左右!


从上文实例可以看出,要尽可能延长无线模块的使用时长需遵循以下设计原则:

在满足客户应用需求的条件下,尽可能的延长发送包间隔,降低工作周期内的工作电流;

一定要正确的配置MCU的IO状态,不同厂家的MCU可能有不同配置,详细参考官方的资料。


LM400TU是ZLG研发设计的一款低功耗LoRa核心模块,模块采用源自军用通信系统的LoRa调制技术设计,结合独有的频谱扩宽处理技术,完美解决了小数据量在复杂环境中的超远距离通信问题。LoRa组网透传模块内嵌自组网透明传输协议,支持用户一键自组网,并且提供专用抄表协议、CLAA协议以及LoRaWAN协议,用户无需在协议上花费大量时间,即可直接开发应用。

图6 LoRa核心模块

关键字:万用表  低功耗 引用地址:了解下常用的测量功耗的手段

上一篇:如何正确操作使用LCR表,如何避免它的损坏
下一篇:教你如何用万用表测电阻

推荐阅读最新更新时间:2024-11-17 02:05

stm32f103 低功耗调试笔记 低功耗模式下一直有个800多uA的电流
最新在做一个低功耗项目 ,用到stm32f103芯片,用到的stop模式和standby模式。 因 stop 只比 standby 模式多1-3uA,最终选用了 stop 模式。下面是官方文档中对几种模式的说明。 根据文档介绍,理论 stm32f103 standby 模式可低至2.1uA, stop 模式 3-5uA的样子。 但实在我们的项目中最终 无论是 stop 和是 standby 都有800uA的电流消不去。 最后把所有的引脚都设为模拟输入状态还是一样,经过一步一步分析,最终发现是在进入低功耗之前开启的ADC转换功能, 发现问题后 ,在时入低功耗之前关闭ADC转换使能即可,参考代码如下:
[单片机]
stm32f103 <font color='red'>低功耗</font>调试笔记 <font color='red'>低功耗</font>模式下一直有个800多uA的电流
贴片电容的大小怎么看
贴片电容怎么看大小,贴片电容由于大小的特性无法设立明确的识别方式,即使有用肉眼也是无法识别的,最好的方法小编还是建议用万用表测量,下面我们来看看测量方法和原因。 万用表测量: 1、黑表笔接COM,红笔接最右边上面; 2、将档位接在被测电容大小的档位; 3、将万用表表笔连接两端测试即可得知; 无法识别的原因: 贴片电容很多由于体积所限,不能标注其容量,所以一般都是在贴片生产时的整盘上有标注。如果是单个的贴片电容,要用电容测试仪测出它的容量。如果是同一个厂标的话,一般来说颜色深的容量比颜色浅的要大,棕灰》浅紫》灰白。当然最好的方法是用热风枪吹下来,等它冷却后用数字表的电容挡或电容表量。 据说这是因为电容的生产和电阻生产工艺
[测试测量]
贴片电容的大小怎么看
飞兆推出业界首个电流检测点火IGBT 降低功耗达30%
FGB3040CS能够降低功耗达30% 飞兆半导体公司 (Fairchild Semiconductor) 推出业界首颗电流检测用点火IGBT器件FGB3040CS,可以在应用中省去用于检测大电流的检测电阻,从而将功耗降低30% 并减少由此带来的热量。FGB3040CS具有电流检测功能,能以小型的低电流检测电阻替代高功率的检测电阻,成功简化系统元件的需求及降低总体成本。FGB3040CS采用EcoSPARK 技术设计,提供了业界最高能量密度的点火IGBT。这项技术可让芯片尺寸缩减到能够装入D-Pak封装中而不会影响性能。 FGB3040CS的主要优势包括: - 与现有的解决方案相比,系统功耗降低30% - 采用EcoSPAR
[新品]
解析校准工作在测试测量中的重要性
  校准工作好像总是安排在项目的最关键时刻进行,比如工作团队忙着准备年度行业展会时。作为说明校准对项目影响的例子,我们假设某台测试设备的校准周期为6个月。在第5个月时,设计工程师启动了一项持续时间为两个月的测试项目。如果在测试期间对该仪器进行重新校准,那么前5个月累积形成的漂移或误差将比较大,这将导致需要重新进行测试。在启动需要该设备的大型项目之前校准该设备是否会更好?又或者说推迟校准以防意外是否妥当?与其它任何事件一样,应该在项目规划软件中制定校准计划,并且应处于关键路径中。如果忽视校准,会造成项目延迟。   什么是校准?   有些人将读数相同的两台仪器(例如示波器和万用表)认为是“校准过”的。然而,这种方法存在问题,至少是
[测试测量]
解析校准工作在测试<font color='red'>测量</font>中的重要性
各种常用二极管的检测方法
半导体二极管又称为晶体二极管.具有明显的单向导电性.是各种电器设备中应用较为广泛的一种半导体元器件,也是日常维修中经常碰到的一种元器件,常见的有普通二极管、稳压二极管、发光二极管、光敏二极管等。熟练掌握各种二极管的检测是初学者必需的技能,笔者略作总结,供初学者参考。 1.普通二极管的检测 (1)小功率锗二极管的正向电阻为300Ω~500Ω,硅二极管为1kΩ或更大些。锗二极管的反向电阻为几十千欧,硅二极管的反向电阻在500kΩ以上(大功率的其值要小些)。 (2)根据二极管的正向电阻小,反向电阻大的特点可判断二极管的极性。将万用表拨到欧姆挡(一般用Rx100或Rx1k挡.不要用Rx1挡或Rx10k挡。因为Rx1挡使用电流太大,容易
[测试测量]
ADI能量采集芯片 低功耗低电压下亦可工作
电子报道:当前我国物联网技术正处于一个快速发展的阶段,家庭自动化、楼宇自动化等智慧环境代表着未来。同样的,一个智能化环境就意味着背后的各种传感器、控制器和执行器,要知道每个这些小小的器件都需要电源。电从哪里来?若是能通过能量采集技术撷取太阳能、振动能、热能、射频所产生的“免费”能源,并加以转换成所需要的能量,岂不是完美解决方案?感谢科技,它确实改变了生活,现在这种设想已不再是天方夜谭。 “能量无处不在”,ADI公司工业与能源事业部亚太区市场经理张松刚先生就坦言。并在被问及目前成熟的能量采集方案都有哪些时,做出了详细的解释,“在进行能量采集系统设计时另外需要考虑的是不要只采用一种能量采集技术,而要在允许的条件下尽可能采用多种能量
[安防电子]
常用电工仪表的使用与测量误差的计算
熟悉各类测量仪表,各类电源的布局及使用方法; 掌握电压表,电流表内电阻的测量方法; 熟悉电工仪表测量误差的计算方法. 为了准确地测量电路中实际的电压和电流,必须保证仪表接入电路后不会改变被测电路的工作状态.这就要求电压表的内阻为无穷大;电流表的内阻为零.而实际使用的指针式电工仪表都不能满足上述要求.因此,当测量仪表一旦接入电路,就会改变电路原有的工作状态,这就导致了仪表的度数值与电路原有的实际值之间出现误差.误差的大小与仪表本身内阻的大小密切相关. 本实验测量电流表的内阻采用'分流法',如图1-1所示 其中A为被测内阻( )的直流电流表.测量时先断开开关S,调节电流源的输出电流I
[测试测量]
常用电工仪表的使用与<font color='red'>测量</font>误差的计算
基于STM32的低功耗温湿度采集器的设计与实现
STM32嵌入式系统在许多控制领域有着广泛的应用。STM32是一款基于Cortex-M3内核的微控器,该控制器在性能和成本以及低功率操作和硬实时控制方面设定了新的标准。 尽管市场上已有多种温湿度采集系统,但具有低功耗且自带数据记录功能的采集器较少,并且费用较高。本文中采用STM32F103RET6设计了温湿度采集系统。该系统工作时间长约30天,低功耗模式采用了停止模式实现,温湿度传感器使用SHTIO温湿度传感器。结合实际使用环境,采集周期为5分钟。采用18650锂电池供电,具有SD卡存储功能,且能实现USB全速通信和串口通信。 1、温湿度采集器设计 1.1、硬件设计 采集器的结构框架如图l所示,主要有供电模块,USB全速通
[单片机]
基于STM32的<font color='red'>低功耗</font>温湿度采集器的设计与实现
小广播
最新测试测量文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved