频率响应分析仪Bode 100—测试电源系统环路响应的利器

发布者:丝语轻风最新更新时间:2021-10-19 来源: eefocus关键字:频率响应分析仪  电源系统 手机看文章 扫描二维码
随时随地手机看文章

频率响应分析仪Bode 100 是执行从1 Hz到50 MHz的准确度,快速频率扫描测量的专业解决方案,这对于电源设计和稳定的环路操作至关重要。


BODE100环路分析仪的主要功能是量测待测物在频域上的特性,了解其性能及稳定性,并可辅助控制线路的设计。因为设计时没有正确评估系统的稳定性。但这种特性无法直接由电流拉载的时域测试来得到,必须经由Bode100频率响应分析仪的使用,才能得到系统的频率响应图,来判读出稳定度的特性。而这种频率响应的测试,不仅速度快,节省大量测试时间。

而Bode 100 不仅仅是频率响应分析仪,它也可作为:

矢量网分分析仪

阻抗分析仪

增益相位分析仪

正弦波发生器

产品特点:

稳定性分析

分析电路控制系统生成伯德图和奈奎斯特图

复阻抗

分析被动电子元件和有源电子电路

频率响应

电子系统的复杂传递函数(增益/相位)

谐振频率

高Q值谐振峰值,ESR测量,RFID

传输/反射系数

表征电缆,滤波器,放大器,S参数测量

自动化测量

通过USB接口很方便集成到自动化系统

Bode软件分析


关键字:频率响应分析仪  电源系统 引用地址:频率响应分析仪Bode 100—测试电源系统环路响应的利器

上一篇:频谱分析仪的分类以及主要用途有那些呢?
下一篇:是德N9000A频谱仪维修信号低故障案例

推荐阅读最新更新时间:2024-11-05 10:30

在分布式电源系统中采用集成DCDC转换器节省空间、缩短研发时
传统的分布式 电源 架构采用多个隔离型DC-DC 电源 模块将48V 总线 电压转换到系统电源电压,如5V、3.3V和2.5V。然而该配置很难满足快速响应的低压处理器、DSP、ASIC以及DDR存储器的负载要求。这类器件对电源提出了更加严格的要求:非常快的瞬态响应、高效率、低电压以及紧凑的 电路 板尺寸。 引言 通过使用单个大功率、隔离型DC-DC模块将48V电压转换成一个中等电源,如12V或更低电压,可以获得较好的系统性能。将这一中等电压再转换到系统负载所要求的具体电压。这样的电压转换可以通过非隔离、负载点电源实现,如图1右侧框图所示。对于第二级电源转换,集成 开关 稳压器是非常理想的选择,因为输入电压(≤ 12V)和输出电
[电源管理]
智能电池供电的电源系统设计
摘要:设计了一个可使用外接直流电或双智能电池组供电的电源系统,给出了主要电路的具体设计方案。该系统可以实现较长的电池供电时间,能够同时对两组智能电池充电,并通过SMBus与主机系统通信来交互系统工作状态。 关键词:智能电池;电源系统;SMBus;SEPIC 引言     随着信息技术的快速发展,便携设备的种类越来越多,处理能力不断增强,所支持的应用也越来越多。便携设备的一种重要的供电方式是采用电池供电,智能电池在便携设备中得到了广泛的应用。衡量便携设备的一个重要指标是电池供电状态下的工作时间。为了实现某专用 便携设备在电池供电方式下可以较长时间地工作,本文设计了一个基于智能电池组的电源系统。该系统可外接直流电或使用双电池组供屯
[电源管理]
智能电池供电的<font color='red'>电源系统</font>设计
车载电源系统开关电源的设计方案详解
目前世界各国正在研究42VDC汽车用电源系统,欧共体计划从2008年开始采用42VDC电源系统。如何在48VDC电源系统下兼容12VDC电子设备成为了一个课题。通过线性稳压电源实现42VDC/12VDC的转换会产生很大的功率损耗,缺点明显。 本文提出了一种具有过载和短路保护的车载电源系统的开关电源设计方案。该方案采用单端反激式结构实现42VDC/12VDC的转换,输出电压稳定,波纹小,不间断,性能可靠且电源损耗小。 UC3842的保护电路设计 1 UC3842的典型应用 UC3842是高性能的单端输出式电流控制型脉宽调制(PWM)芯片,其典型应用电路如图1所示。 图1 UC3842典型应用电路 2 过载保护原理
[嵌入式]
车载<font color='red'>电源系统</font>开关电源的设计方案详解
基于UC3842的开关稳压电源系统设计
  随着电力电子技术的发展,电源装置大量出现在生产生活的各个领域,其电压电流的稳定性、电压调整率、负荷调整率、变换器的效率等因素将直接影响到用电及通信设备的正常运行,严重时还将影响到设备的安全性。因此,如何改善上述各项指标,成为电源装置设计时需要考虑的重要因素。本文介绍一种行之有效的开关稳压电源的系统设计方案。   1 方案论证   1. 1 DC-DC 变换器方案选取   隔离变压器输出工频电压有效值为18 ± 3 V,经桥式整流滤波后输出直流电压约为18 ~ 26 V。要求开关电源的输出电压范围在30 ~ 36 V 之间稳定可调,单端反激式和Boost 直接变换式都可以满足要求。但是,考虑到单端反激式开关电源结构中的脉冲
[单片机]
基于UC3842的开关稳压<font color='red'>电源系统</font>设计
数字电源系统:信息监测无漏洞
由于没有方法直接配置或监视其关键电源系统的工作参数,因此电源设计师一直被迫使用一堆混杂在一起的排序器、微控制器和电压监察器,以设定启动、安全等基本的稳压器功能。虽然数字可编程DC/DC转换器投入使用已有多年(最为显著的就是在采用VID输出电压控制的VRM内核电源),但一直缺乏直接从稳压器来监视工作状态信息(特别是实时电流)的能力。 数字电源 系统管理能通过计算机接口设定和监视各种不同的电源参数,正在消除这个 盲点 。可编程参数包括输出电压、排序、跟踪、多个轨的延迟和斜坡、过流限制和过压限制设定点以及工作频率。数字电源系统管理还能回读遥测数据并报告输入电压、输出电压/电流、温度甚至故障等。   网络设备的系统设计师正被迫提高系
[电源管理]
数字<font color='red'>电源系统</font>:信息监测无漏洞
电源系统设计的无风险路径
  简介   现在,高性能电源系统已经有了长足进展,设计人员正在使用多个输入电压,驱动种类繁多应用的多路电压轨。由于确保PoL稳压器尽可能靠近负载的需求,设计人员需要在一个非常小的范围装满大量功率转换功能。与此同时,企业资源正趋于扩展到工程师期望的多任务地步,常常是由多面手,而不是电源专家来负责设计电源系统。因此,当今复杂的电源要求可能令设计人员非常头痛:如何利用不同资源为多样化的负载提供高性能电源,从而保证架构的所有部分都在其功率和散热范围内运行,同时还可优化效率和成本目标。   新的应用带来了进一步的挑战。例如,随着迁移到更便宜、更清洁、更高效能源的发电,以及政府推动的应用,企业正在寻找如何能够通过转向高压直流(HVDC)配电
[电源管理]
<font color='red'>电源系统</font>设计的无风险路径
提高直流操作电源系统可靠性的技术措施
   直流操作电源 (直流屏)设备是发电厂和变电站的二次电源,用于断路器分合闸及二次回路的仪器仪表、继电保护、控制、应急灯照明等。   随着科技的发展及用户要求的提高,近年来电力操作电源的主电路已逐步由原来的晶闸管相控型发展为高频开关型,而控制部分则由原来的模拟控制方式发展为由微机控制的数字控制方式,微机控制的应用使电力操作电源的运行自动化程度大大提高,并可实现四遥联网功能以满足电站无人值守的需要。但电力系统首要的要求是安全性、 可靠性 ,因此微机控制器的可靠性及抗干扰能力就显得十分重要,笔者近年来一直从事电力操作电源微机控制器及其它微机系统的开发研究工作,现就这一问题作一阐述。    1微机电源   电源是微机控制系
[电源管理]
如何为波特图设置频率响应分析仪
  环路增益是描述开关模式电源特性的一个重要参数。使用频率分析仪来测定环路增益能让您稳定电源并优化瞬态响应。   在测定波特图之前,您需先断开环路并在断点处插入一个小型电阻器,如图1所示。该频率分析仪有一个信号源,可跨该小型电阻器注入交流(AC)干扰信号vds。   图1:典型的波特图测定设置   其结果是,AC波动出现在跨该断点的两个节点(A和B)处。该频率分析仪具有两个接收器,能测量节点A和节点B处的信号vA和vB。您可用方程式1计算出该系统环路增益TV:   方程式1   为了准确测量TV,该分析仪必须准确测量vA和vB。频率分析仪接收器已限制了信号测量分辨率。在本文中,笔者将用来自AP Instruments公司
[测试测量]
如何为波特图设置<font color='red'>频率响应</font><font color='red'>分析仪</font>
小广播
最新测试测量文章
换一换 更多 相关热搜器件
更多往期活动

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved