信号源可为各种元器件和系统测试应用提供精确且高度稳定的测试信号。信号发生器则增加了精确的调制功能,可以帮助模拟系统信号,进行接收机性能测试。矢量信号与射频信号源都可以做为测试信号源,下面我们分析下有各自的特点.
一、矢量信号发生器介绍
矢量信号发生器出现于20世纪80年代,采用中频矢量调制方式结合射频下变频方式产生矢量调制信号。原理是运用频率合成单元产生连续可变的微波本振信号和一个频率固定的中频信号。中频信号和基带信号进入矢量调制器产生载波频率固定的中频矢量调制信号(载波频率就是点频信号的频率),此信号和连续可变的微波本振信号进行混频,产生连续可变的射频信号。射频信号含有和中频矢量调制信号相同的基带信息。射频信号再由信号调理单元进行信号调理和调制滤波,然后被送到输出端口输出。
矢量信号发生器的频率合成子单元、信号调理子单元、模拟调制系统等方面和普通信号发生器是相同的。矢量信号发生器和普通信号发生器的不同之处在于矢量调制单元和基带信号发生单元。
模拟调制一样,数字调制也有三种基本方式,即调幅、调相和调频。一个矢量调制器通常包含四个功能单元:本振90°移相功分单元将输入的射频信号转换成正交的两路射频信号;两个混频器单元将基带同相信号和正交信号分别和对应的射频信号相乘;功率合成单元将相乘后的两路信号求和并输出。一般所有输入输出端口都内部端接50Ω负载并采用差分信号驱动方式,以降低端口回波损耗和提升矢量调制器的性能。
基带信号发生单元用于产生需要的数字调制基带信号,也可以将使用者提供的波形下载到波形存储器中用于产生使用者定义的格式。基带信号发生器通常由突发脉冲处理器、数据发生器、码元发生器、有限冲击响应(FIR)滤波器、数字重取样器、DAC和重构滤波器组成。
二、射频信号发生器介绍
现代频率合成技术常应用间接合成法,通过锁相环路将主振源的频率和参考频率源的频率联系起来,所需硬件设备少,可靠性高,频率范围宽。其核心是锁相环路,射频信号源是一个比较广谱的概念,通常意义上说,能产生射频信号的信号源都可以乘坐射频信号源。当前的矢量信号源也多是射频波段的,所以也称矢量射频信号源。
三、两种信号的区别
1.单纯的射频信号源只用于产生模拟射频单频信号,一般不用于产生调制信号,特别是数字调制信号。这类信号源一般频带较宽,功率动态范围也大一些。
2.矢量信号源主要用于产生矢量信号,即数字通信中常用的调制信号,支持如l/Q调制:ASK、FSK、MSK、PSK、QAM、定制I/Q,3GPPLTEFDD和TDD、3GPPFDD/HSPA/HSPA+、GSM/EDGE/EDGE演进、TD-SCDMA,WiMAX™等标准。对于矢量信号源来说,由于其内带调制器,所以频率一般不会太高(6GHz左右)。相应的其调制器的指标(如内置基带信号带宽)和信号通道数一个重要指标。
关键字:矢量信号发生器 射频信号发生器 调制方式
引用地址:
矢量信号发生器与射频信号发生器的区别是什么
推荐阅读最新更新时间:2024-11-12 11:42
R&S CMW500宽带无线通信测试仪:支持更高阶调制方式
256QAM和64QAM的调制方式在LTE和LTE-Advanced(LTE-A)的上下行都可以增加数据速率。罗德与施瓦茨现在在R&S CMW500宽带无线通信测试仪上提供这些创新的方式。 在2016年巴塞罗那世界移动通信大会上,罗德与施瓦茨公司演示了LTE-Advanced下行四载波的载波聚合射频测试。该解决方案是由包含两台R&S CMW500和一台CMWC控制器的CMWFlexx系统来完成。每个R&S CMW500产生两路采用256QAM调制方式的2x2 MIMO载波。整套CMWFlexx系统可以实现下行高达800 Mbps的高数据吞吐量。 CMWC控制器的研发使得CMWflexx 像CMW500一样操作极为简单。
[测试测量]
是德科技推出新一代矢量信号发生器,面向密集型、宽带多通道应用
• 搭载嵌入式反射计的矢量信号发生器,可提供高度精确的信号 • 紧凑的2U设计,可提供多达四个通道的测试信号,节省高达75%的机架高度 • 信号频率高达 8.5 GHz,每个通道的调制带宽为 960 MHz,具有更佳的误差矢量幅度和邻道功率比性能 是德科技推出一款设计紧凑的全新四通道矢量信号发生器(VSG),即N5186A MXG。这款信号发生器的频率高达8.5 GHz,每个通道的调制带宽为960 MHz。作为是德科技X系列信号发生器产品组合中的新一代高性能矢量信号发生器,N5186A MXG能够为密集型宽带多通道应用提供多路独立复杂信号。 全新Keysight N5186A MXG矢量信号发生器采用紧凑的
[测试测量]
在射频接收机中制造噪声- 用信号发生器仿真真实信号
噪声是一种多余的信号。在通信系统中,噪声会影响发射机和接收机的性能。它会降低发射机的调制质量和接收机的灵敏度。因此,降低电子器件的噪声,是研发工程师最关注的问题。 但是,为了仿真真实环境,您需要在设计中注入一个“噪声”信号。噪声信号需要简单,并且有数学模型为基础。加性高斯白噪声 (AWGN) 是接收机性能测试中最常用的噪声。射频系统中另一个常见的噪声是相位噪声。添加相位噪声减损以进行精确的信号置换或容限测试,这样做对您评测被测器件和诊断被测器件故障很有帮助。 在本白皮书中,您将了解加性高斯白噪声 (AWGN) 和相位噪声的定义,以及如何正确和准确地将噪声加入有用信号中,以便进行接收机性能测试。 向信号中添加实时噪声 什么是加性高斯
[测试测量]
什么是射频信号发生器?信号发生器具有哪些特点?(一)
什么是射频信号发生器? 射频信号发生器是一种电子测试设备,可在各种频率上产生射频信号,具有高光谱纯度、稳定的频率和振幅。射频信号发生器与矢量信号发生器不同,矢量信号发生器产生射频信号,但同时也具有复杂的数字调制能力,具有QPSK、QAM、FSK、BPSK和OFDM等格式;而射频信号发生器提供的调制包括振幅调制(AM)、频率调制(FM)、相位调制(PM)和脉冲调制。 参数 现在的测试测量设备中有许多是具有附加功能的射频信号发生器,它们用于广泛的应用中。射频信号发生器各项参数从根本上可以解释为对输出信号质量的评估,这包括了输出频率和功率的范围、分辨率和精度,以及开关时间和光谱纯度。 频率范围和输出功率是信号发生器的重要参数,以
[测试测量]