高压差分探头是利用差分电路原理而设计,其测量电压高达8kv,脉冲衰减时间达11ms,是对浪涌脉冲校准测量理想工具,测量高压脉冲时能有效的保护示波器不受损坏。高压差分探头较高的测量带宽,*EN/IEC61000-4-5校准测量要求,也可用于压敏电阻浪涌保护类器件钳位电压测量。
高压差分探头是针对高压差分信号的测量,满足浮地测量的需求。其带宽达到50MHz,满足了大部分测试系统的需要;
富的量程可供选择,其差动测量电压范围满足大部分测试电路的要求;电子轻触式按键,使得使用寿命更长;
具有5MHz带宽限制功能选择,5MHz频率带宽满足大部分开关电源中FETs的开关频率的测量,并可以滤除更高频率的噪声和干扰;
带有声光报警功能,且可手动关闭声音报警功能,更具有人性化设计;
高压差分探头配备标准的BNC输出接口,可与任何厂家的示波器配合使用,测量被测电路波形;
高压差分探头具备良好的共模噪声抑制能力,输入端具有较高的输入阻抗和较低电容,可以准确高速地测量差分电压信号。可广泛用于开关电源﹑变频器﹑电子镇流器﹑变频家电和其它电气功率装置等的研发﹑调试或检修工作中。
为高压差分探头安全操作起见,如果示波器配有浮动输入,则请勿使用高压差分探头。高压差分探头需要示波器或其他测量仪器配有接地输入。
关键字:高压差分探头 示波器
引用地址:
高压差分探头的设计,满足各种用户的使用需求
推荐阅读最新更新时间:2024-11-17 17:28
示波器使用步骤说明
示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图象,便于人们研究各种电现象的变化过程。示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。 示波器使用步骤 (1)先预调:反时针旋转辉度旋钮到底,竖直和水平位移转到中间,衰减置于最高档,扫描置于 外X档 ; (2)再开电源,指示灯亮后等待一两分钟进行预热后再进行相关的操作; (3)
[测试测量]
使用示波器对电源模块进行纹波测量
在电源模块物料检测和某些单板测试时,会使用示波器对电源模块进行纹波测量,所以需要了解电源纹波的产生、危害,以及示波器各种探头,用哪种探头测试,最后怎么分析测试的电源纹波是正确的。 01电源纹波 1.1、纹波的产生与描述 开关电源设计电路中脉冲宽度调制(PWM)信号或开关器件控制通道的开启与闭合过程中,开关电源功能模块中的储能电感两端的渐变电流及储能电容两端的渐变电压同步进行充放电并叠加在输出端。由于不存在完美的后级滤波,这就造成输出直流分量上叠加了稳定频率的纹波电压,就是所谓的直流开关电源的纹波。纹波频率的大小与开关电源中开关信号的频率保持一致,一般频率保持在几十到几百KHz的低频领域。纹波的幅值的大小与开关电源模块设计采用的
[测试测量]
基于FPGA的模拟信号波形的实现
1 引言 波形发生器已经广泛的应用在通信、控制、测量等各个领域,如锯齿波、正弦波、方波等波形常用于电路的设计与调试。随着电子技术的迅猛发展,数字化正逐渐地成为电子产业的发展趋势,各公司都将自己的产品向数字化、集成化、小型化等方向进行拓展。众所周知,数字化的电子产品有其不可替代的优势,譬如体积小、集成程度高、抗干扰能力强等特点。但是,数字电路只能够较好地处理脉冲波形,即只对l和0形成的方波处理得很好.对于连续渐变的信号不能够很好地处理,而这恰恰正是模拟电路的优势所在。本文将数字电路与模拟电路相结合,即通过FPGA来产生所需各种模拟波形的控制信号,然后通过模拟电路来处理渐变信号,这样町以得到各种清晰的波形。 2 示波器显示原理 首先
[测试测量]
示波器探头原理及种类介绍
任何使用过示波器的人都会接触过探头,通常我们说的示波器是用来测电压信号的(也有测光或电流的,都是先通过相应的传感器转成电压量测量),探头的主要作用是把被测的电压信号从测量点引到示波器进行测量。 大部分人会比较关注示波器本身的使用,却忽略了探头的选择。实际上探头是介于被测信号和示波器之间的中间环节,如果信号在探头处就已经失真了,那么示波器做的再好也没有用。实际上探头的设计要比示波器难得多,因为示波器内部可以做很好的屏蔽,也不需要频繁拆卸,而探头除了要满足探测的方便性的要求以外,还要保证至少和示波器一样的带宽,难度要大得多。因此最早高带宽的实时示波器刚出现时是没有相应的探头的,又过了一段时间探头才出来。 要选择合适
[测试测量]
电磁干扰的测量与诊断
当你的产品由于电磁干扰发射强度超过电磁兼容标准规定而不能出厂时,或当由于电路模块之间的电磁干扰,系统不能正常工作时,我们就要解决电磁干扰的问题。要解决电磁干扰问题,首先要能够“看”到电磁干扰,了解电磁干扰的幅度和发生源。本文要介绍有关电磁干扰测量和判断干扰发生源的的方法。 1.测量仪器 谈到测量电信号,电气工程师首先想到的可能就是示波器。示波器是一种将电压幅度随时间变化的规律显示出来的仪器,它相当于电气工程师的眼睛,使你能够看到线路中电流和电压的变化规律,从而掌握电路的工作状态。但是示波器并不是电磁干扰测量与诊断的理想工具。这是因为: A. 所有电磁兼容标准中的电磁干扰极限值都是在频域中定义的,而示波器显示出的时域波形。因此
[测试测量]
高压差分探头差分放大原理
高压差分探头是一种用于动力与电气工程、电子与通信技术、航空、航天科学技术领域的计量仪器。采用特殊的电源模块,使高压探头具有更高的稳定性和更低的噪声。高精度系列高压探头内部组件使用极低的温度系数和电压系数,可提供*的测试精度。所有有源高压差分探头的输出阻抗五十,可应用于所有示波器和电压表。 高压差分探头差分放大原理是指一对信号同时输入到放大电路中,然后相减,得到原始信号。差分放大器是由两个参数特性相同的晶体管用直接耦合方式构成的放大器。若两个输入端上分别输入大小相同且相位相同的信号时,输出为零,从而克服零点漂移。可将任意间的两点浮接信号,转换成对地的信号,以供应示波器、电表、或计算机使用,非常多的电路,尤其是电机电路,含
[测试测量]
浅谈数字示波器的死区时间
随着科学技术的发展,数字示波器也越来越先进,而波形刷新率逐渐成为了数字示波器中仅次于带宽、采样率、存储深度之后的第四大技术指标。说到波形刷新率的意义就和死区时间息息相关了。 何为死区时间?死区时间是数字示波器与生俱来的一个缺陷,目前阶段是无法消除的,只能够尽力减小。不同于模拟示波器采用电子束直接打在荧光屏上的显示模式,数字示波器是一个典型的“前端数据采集+后端数字信号处理”系统。这样的系统都有这样一个特点:前端数据采集系统ADC的输出数据吞吐量比后端数字信号处理系统的处理能力大很多,这就意味着后端无法“实时”处理前端输出的数据,从而形成“死区”时间。 例如:SIGLENT(鼎阳科技)最新的数字示波器SDS2000系列的ADC采样率
[测试测量]
美国力科最新款示波器6Zi系列推出大型优惠活动
适用对象:WaveRunner 6Zi及WaveRunner HRO 6Zi(高精度12位ADC示波器) 活动时间:2011年10月1日 至 2012年3月29日
活动内容: (1) 凡购买2GHz带宽或者以下的任意一款WaveRunner 6Zi/HRO 6Zi系列示波器,即可获得价值约25000 人民币的专用频谱分析软件(SPECTRUM)一套。 (2) 凡购买600MHz到2GHz带宽系列的任意一款WaveRunner 6Zi/HRO 6Zi系列示波器,均可免费获取每套价值上万元人民币的低速总线分析软件两套,且可从下述六套软件:电源分析软件(PMA2)、音频总线触发和解码软件(AUDIOBUS TD)、I2C总线触发和解
[测试测量]