平均电流模式DC/DC控制器在信息娱乐终端的应用

发布者:科技小巨人最新更新时间:2007-04-12 来源: 电子系统设计关键字:瞬态  响应  开关  频率 手机看文章 扫描二维码
随时随地手机看文章

由于汽车多媒体信息处理(如,信息娱乐产品)中的高性能微处理器所需的功率不断增加,产生了抗干扰能力、EMI和环路补偿等诸多设计问题。平均电流模式控制(ACMC)有助于解决这些问题,特别是在汽车信息娱乐应用中。本文具体阐述了ACMC,并说明基于电流模式控制的设计为信息娱乐应用带来的优势。我们以MAX5060/MAX5061为例说明ACMC的工作原理,并对数据资料所提供的内容进行了补充。

定义设计目标

具体的汽车信息娱乐终端都会对电源管理提出一组独特的技术、商业上的要求。最重要的设计考虑包括效率、尺寸、EMI、瞬态响应、设计复杂性和成本。所有参数都间接地与电源的开关频率相关,这一重要参数的选择可以使上述要求达到合理折中。

ACMC的优势

对于大电流输出(5A至25A)转换器,在电流模式控制(CMC)技术中降低电流检测电阻有助于提高效率。这里,CMC指带有峰值电流检测的固定频率工作模式。然而,这种方式存在一个缺点:CMC使转换器对噪声非常敏感。电流较大时,即使最好的PCB布线也不能完全抑制叠加在电流检测信号上的噪声。为了解决这个问题,可以选择电压模式控制VMC,这是一种传统的并经过验证的技术。VMC提高了抗干扰能力和转换效率,但需要一定的环路补偿设计才能达到可接受的性能指标。

ACMC设计基础

ACMC技术结合了VMC的抗干扰能力和效率与CMC的稳定性,图1所示为ACMC降压转换器的功能框图。

为了更好地理解ACMC,我们首先回顾一下CMC的原理。观察图1,如果除去电流误差放大器(CEA)和锯齿波发生器,电流检测放大器的输出将连接到PWM比较器的反相端,电压误差放大器(VEA)的输出将连接到同相端。结果形成一个控制电感电流(内环)和输出电压(外环)的双环系统。

如上所述,在大电流输出应用中,希望电流检测电阻RS (见图1)尽可能小,以降低转换器的功耗。但这样做的结果是将一个微弱的信号引入噪声环境中,在系统中表现为抖动。

在ACMC结构中,电流检测信号送入CEA(图1)的反相输入端,而VEA在CEA的同相输入端调节电感电流。通过反馈网络补偿CEA,可以完成一系列操作:调节电流检测信号以获得最大直流增益(对于降压转换器,电感的直流电流等于转换器的输出电流);使实际的电流检测信号不受阻碍地通过放大器;最后,抑制叠加在信号上的高频开关噪声。CEA的高直流增益可使这种控制方案精确地控制输出电流。而CMC对电流检测信号的平坦增益会在输入电压变化时导致电流的峰值与均值误差。如图1,CEA的输出与斜坡电压进行比较产生一个期望的PWM信号来驱动功率MOSFET。

图2显示了图1的控制波形,注意与锯齿波进行比较的电感电流信号iL (红色标示)是反向的。PWM比较器之后的SR锁存器可避免由噪声引起的信号跳变。同样,时钟信号复位锯齿坡电压,从根本上消除了由于噪声尖峰而过早关断MOSFET的可能。这种控制架构的另一个特点是当占空比超过50%时不需要斜坡电压补偿,因为锯齿坡信号已经提供了这种补偿。

对于图1所示降压转换器,内环用于补偿输入电压的变化。随着输入电压的增加,CEA电流信号的下降斜率更陡峭(图2),从而使占空比变窄。外环用于补偿由负载变化引起的输出电压变化,由于电感电流由VEA处理,电源表现为一个单极点响应,从而简化了电压补偿环路。

CEA补偿非常简单,MAX5056/MAX5061数据资料提供了需要遵循的准则。MAX5060/MAX5061 DC-DC转换器可处理上述设计问题,并且具有高效、低噪声和高性价比特性。图3说明了器件中带有补偿网络的CEA架构,推荐使用该补偿网络的原因是CEA没有提供到其反相输入端的直接通路。注意:CEA是跨导放大器,与标准运算放大器相比具有较高的输出阻抗。

为了优化电流环路,电感电流iL (图2中的红色信号)的下降斜率将跟随锯齿电压的斜率,而且iL不能超过斜坡电压,否则将会发生谐振和不稳定。

忽略同步整流器的压降,降压转换器的电感电流下降斜率可由下式给出:

 

IC的最大输入电压为28V。如果转换器需要承受高达72V的电压时,推荐使用图5电路。此电路还能提供反向输入电压保护。

2.同步开关频率

同步开关频率是信息娱乐系统避免敏感负载受到DC-DC转换器干扰的重要举措,这些敏感负载,包括汽车无线电广播系统、TV调谐器、显示器和导航系统等。这些器件可通过以下途径实现同步:使DC-DC转换器工作在自激振荡模式,然后利用高性能处理器将其同步到所要求的频率。MAX5060/MAX5061工作在一个范围为125kHz至1.5MHz的可同步振荡频率。

如果不能将MAX5060/MAX5061与外部时钟同步,或转换器的开关频率产生过强的EMI,则可选择扩频振荡器,如DS1090U-16扩频振荡器,如图6所示,来驱动SYNC引脚。本例中,DS1090U-16的外部电阻将频率设置在300kHz,频率抖动范围为±4%,即12kHz。抖动比例不应太高,因为扩频会引起系统环路的相位偏移,需要进行补偿。有关DS1090的频率计算可参考应用笔记3692:DS1090频率计算器。

3.升/降压工作

MAX5060/MAX5061也可实现升/降压转换(图7)。

注意:图7中的电容C1和C2需要比输出相同电流的降压转换器承受更大的纹波电流,另外,图中的两个电感可以用同一磁心绕制,L1、L2的同名端如图7所示。如果使用独立的电感,则可忽略绕制方向问题。

MAX5060/MAX5061的CSA共模范围可以扩展到0至5.5V,设计输出电压大于5V的转换器时,可以选用以下两个电路。图8电路使用了一个现成的电流检测变压器,图9电路使用一个电阻桥。选用1%电阻进行设计,为减小电阻kRS的尺寸和功耗,将VRS偏置在5V。EAN输入应设为0.6V,需要一个独立的分压器。

结论

虽然CMC DC-DC转换器已经备受设计者的青睐,但利用廉价检流电阻提供高效率转换的要求暴露出了CMC的主要缺陷:对噪声的敏感性。MAX5060/MAX5061所采用的ACMC技术解决了噪声敏感度等问题。ACMC可使DC-DC转换器设计满足高性能微处理器的要求,特别是汽车多媒体终端的高性能微处理器。

关键字:瞬态  响应  开关  频率 引用地址:平均电流模式DC/DC控制器在信息娱乐终端的应用

上一篇:汽车应用中的限压电路
下一篇:车载低端图像数据采集压缩存储及传输系统的实现

推荐阅读最新更新时间:2024-05-13 18:35

智能高频开关电源系统的改造设计
  变电站内的继电保护、自动装置、信号装置、事故照明和电气设备的远距离操作,一般采取直流电源,所以直流电源的输出质量及可靠性直接关系到变电站的安全运行和平稳供电。    直流系统改造的目的和必要性   变电站的直流系统被人们称为变电站的“心脏”,可见它在变电站中是多么的重要。中原油田的电力系统始建于上世纪70年代末,因受当时技术条件的限制,陆续建起的变电站直流系统设备有的为硅整流电容补偿直流电源,有的为带有铅酸蓄电池的KGCA—50/98~360、KGCFA—75/200~360型硅整流直流电源,有的为BZGN—20/220型镉镍电池直流屏。部分投运较早、运行时间较长的变电站直流设备老化严重,给变电站的安全、可靠运行带来了严重的
[电源管理]
高频电流探头的响应频率非常高
   高频电流探头 是一种非常重要的电流测量仪器,被广泛应用于电力工业、电子产业、通信产业等领域。它的主要功能是对高频电流进行测量,并将电流信号转化为电信号输出,从而为我们提供便捷,精确的电流测量手段。   高频电流探头适用于测量高频电流的瞬态行为,即电流的变化速度非常快,如果用传统的直流电流探头或低频电流探头来测量,往往会因为探头响应速度慢而造成误差。同时,电流探头与被测电路之间没有电气接触,在进行电流测量时不会造成电路的干扰或负载,避免了被测对象的改变,从而保证了电流测量的准确性。   高频电流探头与其他电流探头的最大区别在于,它的响应频率非常高,可以达到几百兆赫兹的数量级。这种高频响应的特点,使得它在高速数字信号处理、计算机
[测试测量]
高频电流探头的<font color='red'>响应</font><font color='red'>频率</font>非常高
一种高性能红外信号检测开关的设计与实现
  四元红外探测器采用光敏元件,只有每个探测器都探测到信号时才触发报警。比普通双元红外和幕帘式探测器有更强的抗误报能力和更好的探测性能。有侵入方向识别能力,用户从内到外闯入警戒区,不会触发报警,只有非法入侵都从外界侵入才会触发报警,极大地方便了用户在设防的警戒区域内活动,同时又不触发报警系统,真正地实现“零误报”。并且其外围器件很少,节约了空间和成本及调试时间,提高整机可靠性。    l 红外采集模块   红外探测器是一种辐射能转换器,主要用于将接收到的红外辐射能转换为便于测量或观察的电能,热能等其他形式的能量。双元探测器包含两个单元,它们对共同的FET输出是反极性连接的,但是四元探测器包含四个单元,两个输出,这两个独立的通道
[模拟电子]
开关电源技术之非隔离型降压式电源设计的分析
非隔离 降压型是现在普遍使用的电源结构,其几乎占了日光灯电源百分之九十以上。很多人都以为不隔离电源只有降压型一种,一说不隔离,就想到降压型,就想到说对灯不安全-指电源损坏后。其实降压型只是一种,还有两种基本结构,即升压,和升降压,即BOOST AND BUCK-BOOST,后两种 电源 即使损坏。不会影响到LED,有这种好处。 降压式 电源 也有其好处,主要第一点,适合用于220,但不适用于110,因为110V本来电压就低,一降就更低了,那样输出的电流大,电压低,效率做不太高。 降压式220V交流,整流滤波后约三百伏,经过降压电路,一般将电压降到直流150V左右,这样即可实现高压小电流输出,效率可以做高。一般用MOS做开关管,做这
[电源管理]
开关电源设备整体更换的基本解决方案
    任何一种设备都是有它本身的生命周期,到了设备生命周期的晚期阶段,设备不可避免地会出现老化、效率下降、故障增多等种种情况,也不利于生产安全,且易发生关联故障,引起重大损失。另外,由于设备生产厂家的原因,生命周期后期的各种备品备件无法得到保障,给设备的维护检修带来一定困难,故需对到期设备进行更新改造,确保现网生产安全。     -48 V直流是传输、交换设备的主要用电规格,部分数据设备也使用-48 V直流,因此直流开关电源是通信设备的主要保障电源,根据《中国移动通信电源、空调与监控维护管理规定(2008版)》第三章第一节第十九条规定,高频开关整流变换设备的更新周期为12年,到期即需组织专业人员制定更换方案并安全实施。
[电源管理]
<font color='red'>开关</font>电源设备整体更换的基本解决方案
LC谐振频率的测试方法和基本原理
研究背景 传统上LC谐振频率的测试方法是通过逐点改变加在 (直接或者间接 )LC谐振回路上信号频率来找到最大输出时的频率点,并把这一频率点定义为 LC谐振频率。很明显这种测试方法的缺点是:测试方法比较复杂,测试时间长,测试精度低,而且直接受到谐振体尤其含磁芯谐振体由于较长测试时间所引起温度变化的影响。本论文中所要介绍的应用在PLL基础上对LC谐振频率进行测试的原理和方法具有快速,高精度和不受温度变化的影响,并且还具有测试方法简单的特点。本论文主要从理论上简明使用PLL对LC谐振频率进行测试的原理。 基本原理 测试LC谐振频率可以通过图1所示的2次耦合回路形式来完成。其中 L2C2组成一个待测LC谐振回路, L1是发射线圈,Li
[测试测量]
LC谐振<font color='red'>频率</font>的测试方法和基本原理
流量开关、水位开关
电子式水位开关水位开关分为:电容式水位开关、电子式水位开关、电极式水位开关、光电式水位开关、音叉式水位开关、浮球式水位开关等
[模拟电子]
癌症基因"开关分子"首次合成 可控制肿瘤生长
可控制癌症基因开关的分子首次合成 有望为抗癌治疗带来一种全新方法    为了阻止肿瘤生长蔓延,科学家们不断从各个途径不懈努力。美国科学促进会、英国《自然》杂志网站近日报道,美国达那·法博癌症研究所一个国际联合研究小组研制了一种分子,能让控制癌症的基因指令失效,从根本上抑制了癌症肿瘤的生长。       新研究演示了一种蛋白质能向癌症基因发出“停止”和“开始”命令,这种蛋白就是表观基因“阅读”蛋白,也正是今后癌症治疗所瞄准的目标。       最近几年,控制癌症基因行为的研究有了很大发展,用控制基因开关的方法治疗癌症效果明显。论文主要作者、达那·法博癌症研究所詹姆斯·布雷德纳说,如果能关掉一个癌细胞的生长基因,细胞就
[医疗电子]
小广播
最新应用文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved