开关电源设备整体更换的基本解决方案

最新更新时间:2012-01-19来源: 21IC关键字:开关电源  整体更换 手机看文章 扫描二维码
随时随地手机看文章

    任何一种设备都是有它本身的生命周期,到了设备生命周期的晚期阶段,设备不可避免地会出现老化、效率下降、故障增多等种种情况,也不利于生产安全,且易发生关联故障,引起重大损失。另外,由于设备生产厂家的原因,生命周期后期的各种备品备件无法得到保障,给设备的维护检修带来一定困难,故需对到期设备进行更新改造,确保现网生产安全。

    -48 V直流是传输、交换设备的主要用电规格,部分数据设备也使用-48 V直流,因此直流开关电源是通信设备的主要保障电源,根据《中国移动通信电源、空调与监控维护管理规定(2008版)》第三章第一节第十九条规定,高频开关整流变换设备的更新周期为12年,到期即需组织专业人员制定更换方案并安全实施。

    由于开关电源所负责供电的通信设备绝大部分都是核心网元,要求提供24 h不间断工作电源,因此开关电源在整体更换过程中必须确保输出不中断,整个过程不能对负载有任何不良影响,威胁网络安全。开关能源整体更换方案具有较大难度和风险。中国移动成立已满10年,开关电源设备已开始陆续进入更换期,而在整体更换方面,还没有太多的经验。本文对开关电源整体更换方案进行了详细介绍,并通过具体工程对其可行性进行了充分验证,在此提供一种可供借鉴的方法。

    上海移动公司于2008年和2011年先后在漕溪大楼和武胜大楼成功地实施了对西门子和台达的开关电源进行整体更换改造工程。对整个替换过程和注意要点,笔者进行了总结,在此作相关介绍。

    1 更换方案的比较

    -48 V直流开关电源系统如图1.开关电源设备整体更换更新基本有以下几种基本方案,具体优缺点分析如下:

图1 -48 V直流开关电源系统图

    1.1 原位更换

    方案要点:在机房内安装一套临时电源系统,与老系统并接后,将所有负载割接到临时系统后,在原位安装新电源系统,再次与临时系统并接后,将所有负载割回新系统的方式,并拆除临时电源系统。

    优点:机房整体协调,不破坏原有供电系统,对通信设备影响较小,适合于少量套数电源更换,投资较低,且适合无多余装机位置的老机房。

    缺点:难度最大,包括方案的制定和具体的施工实施,要求对系统非常熟悉,施工工作量大,涉及大量不停电割接。

    1.2 换位更换

    方案要点:在机房内安装一套新系统后,与老系统并接后,对所有负载重新布放新电缆或老电缆利旧接长后,在线割接所有负载到新系统后,拆除老系统。

    优点:施工难度较小,工作量明显小于原位更换方案,适合装机位置富裕的机房。

    缺点:原有供电系统中的输出电缆由于路由改变都将重新布放,或通过电缆复接等手段延长原有电缆,留有隐患,投资较大。

    1.3 保留原有直流配电屏,只更新整流模块分

    方案要点:在机房内安装临时电源系统,与老系统并接后,拆除原有整流模块屏,安装新模块屏,与直流配电屏并接后,拆除临时电源系统。

    优点:施工工作量小,对负载熟悉程度要求较低,投资小,若是更换同厂家同型号产品,则难度较低。

    缺点:由于厂家设备也在不断更新,同型号产品很可能已经停产,此方案中的模块屏和直流屏的连接和安装方式需重新设计,难度较大。若是不同厂家产品,则牵涉到系统的检测、控制和告警系统混用,难度更大,且电源系统内部设备周期不一致,存在后续更新工作量。

    不同更换方案优缺点及适用场景对比如表1.综合各方面因素从长远考虑,本案例采用了方案1.虽然施工难度较大,但属于一劳永逸,可以确保电源长期稳定输出。只要做好前期准备工作,成功把握性还是比较大。

    表1 不同更换方案优缺点及适用场景对比表

    2 开关电源整体更换方案

    根据方案一的要求,需要首先新建临时动力系统,将负载全部割接至临时系统,然后将原位置设备拆除,新建动力系统,再将临时系统上的负载全部割接至新建系统上。关键点有三个:

    (1)负载排摸;前期准备,所有工作顺利完成的基础,确保业务不受影响的前提;(2)系统并接;难度最高的操作,也是最难控制的环节;(3)负载割接;不同的负载接入方式需要不同的割接方法,需要万分的谨慎和仔细。

    下面对这三个重要环节逐一介绍。

    2.1 负载排摸的方法

    开关电源直流系统的负载在通信系统中非常重要,制定方案前必须将每套待更换的系统负载进行拉网式排摸,做到了然于胸,才能确保万无一失。如负载性质、负载大小、负载供电方式、负载路由等等。

    由于待更换的系统都是老系统,经过10年以上的运行,负载多次割接,负载情况变得非常复杂,在负载的排摸过程中,不可能通过简单的测电流、摸线等方式就能摸清所有负载,需要采取一些非常规手段才能达到目的。

    (1)首先对本局点所有直流负载资料进行核对,摸清大致情况;

    (2)重点对待更换系统负载进行二级配电屏位置确认,可以开启均充模式,在二级屏处量得均充电压的,都为本系统输出负载,必要时采用调整浮充电压再次确认,要求输出屏有多少熔断器输出,必须找到多少受电端子;

    (3)测量每路熔断器电流值,同时测熔断器端和受电端,如测得电流一致且与其余电流值差异较大,则可确认对应关系;

    (4)若电流值差异较小,则可根据电缆线径加以判断;

    (5)若线径相同,则可根据电缆外观加以判断,包括电缆的颜色、新旧程度、电缆皮的材料等;

    (6)若电缆外观相同,则可根据电缆接线头加以判断,包括接线头的材质、颜色、绝缘包布的材质、颜色等;

    (7)若接线头也相同,则需采用非常规手段了,如有可能,请通讯专业同志配合增加或减少负载量,根据电流变化判断;

    (8)若不可行,则可接驳假负载,人为制造电流变化,加以判断;

    (9)同时需结合电缆吊牌、电缆路由、走向等其它因素共同判断熔断器端和受电端的对应关系,不能放过任何一个疑点,要求同时符合所有条件才能最终判定;正线的排摸过程中,两端测得的电流很可能不一致,则可找到大致对应关系后结合电缆线径、材质、电缆头等多种因素后判断;若仍不能确认,也采取人为影响负载变化的方法,包括复接正线等手段,都可以采用。

    2.2 系统并接的方式

    开关电源更换中的一个难点在于临时系统和更换前的老系统及更换后的新系统的并接上。由于通信设备的连续工作特性,要求两套系统并接需带电进行,且不能影响设备用电,难度较大。系统并接前,需关闭电池均充模式,同时调节系统浮充电压。

    系统并接一般有以下几种方式:

    2.2.1 铜排直连

    两套系统的正负铜排直接采用硬连接,即铜排直连,老系统需有螺栓紧固点,连接铜排需现场测量尺寸加工冲孔,难度很大,也不美观,尤其是采用只更新整流模块方式的,必须采用铜排连接,其中还牵涉到原有铜排的拆除,难度更大。

    2.2.2 电缆连接

    两套系统的正负铜排采用电缆直接接驳铜排,难度在于由于电缆较多,较难找到正负铜排上足够的螺栓紧固点,或找到也不集中,影响负载割接时的施工空间。空载系统浮充电压适当低一点,以免接电缆时冒火星,并接后,慢慢调高浮充电压,承担负载电流。

    2.2.3 通过蓄电池端连接

    两套系统的正负铜排通过蓄电池组正负排连接,较安全,施工难度小,且电池在其中起到了调节作用,减小系统波动。空载系统浮充电压适当调高一点,随着负载的逐渐增加,系统电压会降低。

    采用第三种方式。

    2.3 负载割接的方式

    三种更换方案中,对于只更换整流模块的方案不牵涉到负载割接,其余两种都牵涉到负载割接,且在不中断业务的情况下割接,尤其是原位更换更是涉及到割接到临时系统和割接回新系统两次,每次割接都会存在较大风险,都需要谨慎对待。这个环节就显现出前面负载排摸的重要性,摸的越准,出事故的概率越小,同时必须遵循在线电源系统割接基本原则,如低业务风险原则、维护部门全程督导原则等。

    具体负载可分为几大类,分别有不同的割接方式对应实施:

    (1)可停电负载。

    a.通信专业同志配合停止设备工作,监测电流变化,负线电流到零,正线电流明显减小,这是由于电流总是从电阻小的线路通过的特性决定的;b.拆除熔断器;c.拆除电缆;d.临时电缆接长后,接入另一系统;e.装上熔断器;f.启用设备;g.监测电流变化,要求与原值基本一致。

    (2)主备用两路熔断器输入的负载。

    a.在设备端停止一路电源供电,监测电流变化,另一路电源承担全部电流,且正线电流也有相应变化;b.拆除熔断器;c.拆除电缆;d.临时电缆接长后,接入另一系统;e.装上熔断器;f.在设备端恢复供电,监测电流变化,两路电源分担电流,且正线电流也有相应变化;g.重复操作另一路熔断器的割接。

    (3)单路输入的负载。

    a.在二级屏周围寻找同一系统供电的另外二级屏,且二路熔断器电流相加值不大于单路熔断器额定值的80%;b.采用临时电缆并接两只二级屏正负排;c.拆除熔断器;d.监测电流变化,另一路熔断器电流增加,正线电流相应变化;e.拆除电缆;f.临时电缆接长后,接入另一系统;g.装上熔断器;h.监测电流变化,两路熔断器电流相应变化,正线电流相应变化。

    (4)多根电缆并接的负载。

    拆除电缆时,一根一根电缆拆除,同时监测电流变化。

    (5)单根电缆输出的负载。

    必须采取先布放临时电缆措施,再拆除原有电缆,同时监测两路电缆电流变化。

    总之,负载割接时需做到,拆除时量电流,接上时量电压,同步监测相应的熔断器和电缆电流变化,变化的方向和大小要和预估保持一致,电压不得超过-43~-58 V的范围[6]。所有的电缆除割接时握在手中的,全部都要做绝缘处理,电缆标识要清楚,避免现场混乱,方能保证割接安全。

    3 总 结

    设备随着生命周期的终结,更换是必然的。在通信行业中,电源设备的不停电更换由于行业的特殊性也是必需的。维护人员只要做好充分的准备工作,包括前期大量的资料收集分析整理,制定详细的割接方案,根据各种预演突发事件制定应急预案、回退机制,割接时经验丰富的现场指挥保持清晰的思路、加强现场把控,监护人员保持高度的警惕性,施工人员严格按流程操作,胆大心细,带电更换的成功是可以达成的。

关键字:开关电源  整体更换 编辑:探路者 引用地址:开关电源设备整体更换的基本解决方案

上一篇:单片开关电源效率技术方案
下一篇:如何降低移动设计功耗

推荐阅读最新更新时间:2023-10-18 16:22

磁性元件,在开关电源中都有哪些损耗?
开关电源磁性元件一般就是指变压器和电感,变压器在开关电源中应用非常广泛。变压器的作用大致是提供初级和次级的电气隔离,使输出电压或升或降,传送能量。电感在开关电源中起着储能和滤波作用。在典型的降压转换中,电感的一端是连接到DC输出电压,另一端通过开关频率切换连接到输入电压或者GND,在开关判断期间对负载提供持续的能量。 通常情况下,磁性元件的损耗占开关电源总损耗的15%左右,了解磁性元件的损耗的组成对提高电源效率具有重要意义。磁性元件上发生的损耗包括铁损和铜损。 铁损 变压器铁损包括磁滞损耗、涡流损耗和剩余损耗。 磁滞损耗 磁畴在电磁磁化作用下发生的转动,其中的弹性转动是储能,将来反向磁化磁能还会释放,但是另一部分刚性摩
[测试测量]
磁性元件,在<font color='red'>开关电源</font>中都有哪些损耗?
具有两组15V直流和一组5V开关电源电路设计图
  如图,J1为仪表的1、2号接线端子。VD3、C7、C9等将变压器T1低压绕组输出的交流电压整流、滤波后,输出的15V直流电供一组电路使用;VD4、C6、C8等组成另一组直流电源。GND1、GND2分别为两组电源各自的地端 (公共端)。IC1、IC2、L3等组成5V开关电源,其原理L为抗干扰线圈,U为整流桥,T为变压器;IC1与IC2、IC3等构成开关电源,输出5V。IC5等构成5V电源。IC2为 光耦 合器。IC1为TOP221Y型集成开关电路。
[电源管理]
具有两组15V直流和一组5V<font color='red'>开关电源</font>电路设计图
开关电源的尖峰抑制
  1 引言   电源纹波会干扰电子设备的正常工作,引起诸如计算机死机、数据处理出错及控制系统失灵等故障,给生产和科研酿成难以估量的损失,因此必须采取措施加以抑制。   产生尖峰的原因很多,以下着重说明滤波电路对二极管反向恢复时间所产生的纹波尖峰加以分析,并总结出几种有效的抑制措施。   2 滤波电路   为减小电源尖峰干扰需要在电源进线端和电源输出线端分别加入滤波电路。   2.1 电源进线端滤波器   在电源进线端通常采用如图1 所示电路。该电路对共模和差模纹波干扰均有较好抑制作用。   图中各元器件的作用:   (1)L1L2C1 用于滤除差模干扰信号。   L1L2 磁芯面积不宜太小
[电源管理]
<font color='red'>开关电源</font>的尖峰抑制
开关电源变压器涡流损耗分析
 开关电源变压器的涡流损耗在开关电源的总损耗中所占的比例很大,如何降低开关电源变压器的涡流损耗,是开关电源变压器或开关电源设计的一个重要内容。变压器生产涡流损耗的原理是比较简单的,由于变压器铁芯除了是一种很好的导磁材料以外,同时它也属于一种导电体;当交变磁力线从导电体中穿过时,导电体中就会产生感应电动势,在感应电动势的作用下,在导电体中就会产生回路电流使导体发热;这种由于交变磁力线穿过导体,并在导体中产生感应电动势和回路电流的现象,人们把它称为涡流,因为它产生的回路电流没有作为能量向外输出,而是损耗在自身的导体之中。   单激式开关电源变压器的涡流损耗计算与双激式开关电源变压器的涡流损耗计算,在方法上是有区别的。但用于计算单激式开
[电源管理]
<font color='red'>开关电源</font>变压器涡流损耗分析
基于常用直流开关电源的保护电路设计
  概 述   随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,因此直流开关电源开始发挥着越来越重要的作用,并相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了直流开关电源 。同时随着许多高新技术,包括高频开关技术、软开关技术、功率因数校正技术、同步整流技术、智能化技术、表面安装技术等技术的发展,开关电源技术在不断地创新,这为直流开关电源提供了广泛的发展空间。但是由于开关电源中控制电路比较复杂,晶体管和集成器件耐受电、热冲击的能力较差,在使用过程中给用户带来很大不便。为了保护开关电源自身和负载的安全,根据了直流开关电源的原理和特点
[电源管理]
高效低功耗的开关电源设计攻略
如何能够让大家更认同你的设计?如何能够在节省成本下提高效率、降低功耗?本文中为大家分享了如何考虑这些问题并给出了实践中的经验。 首先我们来聊一下关于节省成本的问题,以下几个实际例子就可以说明我们在选用各项元器件或IC时候应该考虑的问题。关于拉高/拉低的电阻用多大的阻值?市场最接近的是4.99K(精度1%),其次是5.1K(精度5%),其成本分别比精度为20%的4.7K高4倍和2倍。20%精度的电阻阻值只有1、1.5、2.2、 3.3、4.7、6.8几个类别(含10的整数倍);类似地,20%精度的电容也只有以上几种值,如果选了其它的值就必须使用更高的精度,成本就翻了几倍,却不能带来任何好处。针对于面板上的指示灯的颜色问题,红绿
[电源管理]
开关电源中控制器特性分析举例
  假设控制对象为Buck转换器,已知其控制一输出传递函数为:   考虑ESR零点时,   式中 RC——滤波电容的ESR,假设滤波电感的电阻可以忽略。   G(s)有一个ESR零点:ωz=-1/RcC,位于左半S平面;谐振频率   ,阻尼系数2ζ=(RcC+L/R)ωr≈ωrL/R,品质因数   由于G(s)有高频ESR零点,在ωc处相位滞后   并使G(s)幅频特性的斜率由-2变成-1。   下面分析采用比例和比例一积分控制器对ESR=0的理想Buck转换器系统特性进行校正的设计方法和问题。   (1)选用比例控制器,比例系数为kp,则控制器的传递函数为   忽略ESR零点时,未
[电源管理]
<font color='red'>开关电源</font>中控制器特性分析举例
如何降低LED照明开关电源待机功耗
与普通光源相比, LED 灯具有效率高、环保和使用寿命长的特性,因而它们正在成为降低室内和外部照明能耗的主选解决方案。设计用于照明供电的开关电源也应该具有高效率,以便顺应LED灯的节能特性。除了在正常工作过程中具有高功率转换效率之外,开关电源的待机功耗也成为LED业界的普遍关注焦点。在不远的将来,待机功耗有望调整到1W甚至300mW以下。然而,在 LED照明 应用中,专用于待机电源的辅助功率级并不适用,主要是因为照明应用在工作期间不存在待机条件。但是,为灯泡供电的开关电源即便在没有灯或者灯已损坏的条件下仍然与电网连接并吸取能量。这是在照明应用中关心待机功率水平的主要原因。   在空的办公楼中,待机功耗特性不良的照明系统是不环保的,
[电源管理]
如何降低LED照明<font color='red'>开关电源</font>待机功耗
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved