基于自适应技术的动态CPU供电单元

发布者:SparklingMelody最新更新时间:2006-12-06 来源: EDN China关键字:功耗  主板  电压  引脚 手机看文章 扫描二维码
随时随地手机看文章
CPU核心电压Vcore波动会影响CPU正常工作,Vcore过高,将导致CPU发热量上升、寿命缩短甚至烧毁;反之,Vcore过低则可能引起数据损坏、死机、蓝屏等故障。由于CPU集成度越来越高,制作工艺越来越精细,CPU功耗越来越大,因此对供电系统提出了更高的要求。

  一、自适应电压调节系统的结构

早期主板普遍采用跳线或DIP开关来设定CPU电压,在安装或更换CPU时,需要根据CPU核心电压对照主板说明书,在主板上插拔挑线或拨动DIP开关进行设置,稍有不慎就可能烧毁CPU和主板,十分危险。为了解决这个问题,Intel公司从Pentium Ⅱ开始采用VID(Voltage Identification,电压识别)技术,VID技术是一种自适应电压调节技术,采用这种技术后,主板供电电路可按CPU需要自动设置供电电压,不再需要进行人工干预了。

自适应电压调节技术的核心是在CPU上增加了若干个VID引脚,这些引脚输出的编码信号控制Vcore供电电路中的PWM(Pulse Width Modulation,脉宽调制)控制器。开机后CPU将VID信号发送给PWM控制器,调整PWM控制器输出脉冲信号的占空比,迫使DC/DC电路输出的直流电压与CPU的额定电压相一致(图1)。采用VID编码后,VID的可编程特性使得用户可以在BIOS中修改Vcore,一些主板制造商还编制了专门的工具软件来显示和修改Vcore值,给用户带来很大方便。

       图1 自动设定原理

自适应CPU供电电路的信号流程如图2,电脑的主电源工作后,VttVR调压器开始工作,它一方面为CPU中的VID控制器提供电源,一方面输出VID_PWRGD信号。VID_PWRGD信号同时送往CPU中的VID控制器和Vcc调压器中的PWM控制芯片的对应引脚,分别作为VID控制器和PWM芯片的输出允许信号。VID控制器接收到VID_PWRGD信号这个信号后立即通过若干条信号线同时输出各位VID信号。在VCC调压器内,PWM控制器接收到VID信号后,向场效应管驱动器输出脉冲信号,启动DC/DC转换功能,输出Vcc电压。待电压稳定后,PWM芯片向CPU提供VCC_PWRGD信号,让CPU开始工作,如图3。

   图2 供电系统原理框图

    图3 自适应电路时序图

  二、VID与Vcore的关系

如前所述,CPU供给PWM控制器VID信号,由PWM控制器控制DC/DC降压电路,实现对输出电压的调整。实际上,PWM控制器输出的脉冲信号的频率(或周期t)通常维持不变,改变的只是脉冲的占空比t1/t的大小,如图4。由于t不变,t1增大则输出电压高,t1减小则输出电压降低,t1不变则输出电压不变。电压数值最终由MOSFET导通的时间所决定,输出电压V的大小与MOSFET的导通时间t1成正比。

  图4 PWM原理

在实际电路中,PWM采用移相式控制方式输出脉冲信号,控制MOSFET的导通和关断。DC/DC电路输出脉动直流电,其纹波分量很大,须经电容滤波后输出平滑的直流电。当滤波电容的容量足够大时,实际输出的波形近似为一条直线。

在自适应供电系统中,t1是由CPU提供的VID编码控制的。CPU的每个VID引脚有高电平和低电平两种状态,分别代表“1”和“0”。“1”和“0”的不同组合构成了VID编码与输出电压之间的关系,见表1。由于VID编码是不连续的,因此DC/DC转换器实际上是一种阶梯式降压器(Step Down Regulator,简称SDR)。

 

Intel为其各款处理器产品制定了相应的电压调节模块(Voltage Regulation Model,VRM)设计规范,从Prescott核心微处理器开始,电压调节规范改用VRD(Voltage Regulation Down)来命名,各版本供电设计规范中VID位数、电压调节精度和电压调节范围都各不相同,见表2。


VRD10.0将VID编码从5位升级到6位,使得电压调节精度从25mV提升到12.5mV,同时VRD10.0还提出了对VID进行动态调整的要求。

  三、 动态电压调节技术

摩尔定律在芯片规模和性能方面的定义无比精确,但它却忽视了芯片功耗带来的制约:性能与功耗几乎是同步提升,到2005年内微处理器的最高功耗可能要攀升至150W,但目前采用的风冷或水冷散热技术所依托的热传导方式,都不可能将核心内部的热量迅速带走,导致核心温度过高,从而引发蓝屏和死机故障。

动态电压调节(Dynamic Voltage adjusting,DVA)技术正是在这种背景下提出来的,其基本思想是根据CPU核心功率变化适时调节供电电压值,最大限度地减少微处理器的发热量。譬如,Prescott处理器的功率达到100W之多,这个功率是指CPU占用率100%时的情况,功耗大小随CPU的忙碌程度的变化而变化,在系统空闲时CPU实际负荷要小很多。如果CPU输出的VID维持不变,Vcore将超过CPU的实际需求,从而带来不必要的电能浪费。

另一方面,当CPU处于十分忙碌的状态时,CPU和供电电路自身内阻的电压降会随电流增加而增加,如果CPU输出的VID维持不变,Vcore的实际数值将随电流的增加而降低,电压的降低势必降低CPU的稳定性,这是毋庸置疑的。

动态自适应电压调节技术是一种智能供电技术,与传统的供电技术相比,动态VID的优势体现在以下三个方面:

  (1)  向CPU核心(die)提供稳定的电压,

提高了CPU工作稳定性;

  (2)  根据CPU工作情况,动态地将供电电压调节到某一时刻所需的最低水平,使供电电压“恰好满足需求”,实现最大限度的节能。

  (3)  如果出现电流猛增的意外情况,VID控制器可以限制电流增加,保护CPU免于因发热过多而烧毁。

为了配合CPU内VID控制器实现CPU核心电压的动态调节,Intel提出了柔性主板(Flexible Main Board,FMB)概念,并相继推出了FMB 1.X和FMB2.X设计规范。为了能够向CPU提供足够的电力,降压电路必须拥有功率足够的MOSFET器件,同时在电流超标时能及时采取措施让电流降下来,防止产生过多的热量摧毁CPU和主板。

  四、动态电压调节的实现

关于动态电压调整的策略,Intel在VRD10.0设计指南中说得很明白:供电系统需要提供对动态VID技术的支持,使得CPU中VID控制器通过VID总线每隔5ms对VID进行一次调整,步长(steps)为12.5mV,直到某一VID能够满足要求为止。那么,调整的根据是什么呢?

  为了描述电压调整的过程,首先定义下面3个负载曲线:

  电压最大值Vmax= VID – (RLL* ICC)

  电压典型值Vtype = VID – TOB – (RLL* ICC)

  电压最小值Vmin = VID – 2*TOB – (RLL* ICC)

式中RLL是传输线路等效电阻,这里是指电压调整电路经CPU插座(Socket)到CPU引脚之间的阻抗,包括导线电阻和CPU引脚与插座间的接触电阻。由于RLL的存在,使得在主板输出电压与实际提供给CPU核心电压之间存在一个落差。电压跌落随ICC的增加而线性增加,因此RLL是负载线的斜率。TOB是由制造误差和温度漂移等因素形成的误差。

CPU中VID控制器采用“查表式”调节方式,图5描述了处理器电压调低的过程。处理器开始时负荷比较高,随着负荷的减轻,实际电压随ICC减少而升高,并停止执行VID编码(①→②);进入状态②之后,处理器经过短暂延时,以便为降低VID的操作做准备,然后对VID编码进行初始化,导致电流拉回到状态③;从状态③到状态④的变化,表示VID降低,从初始负载线窗口转入较低的负载线窗口;从状态④到状态⑤表示在较低的VID负载窗口中,VCC随ICC变化的瞬态过程。VID从低到高的调整过程与上述过程相反。

图5 负载线

  五、结语

供电系统的工作质量关系到计算机系统的稳定和安全,供电系统工作不好,就等于计算机患了心脏病。自适应供电技术不仅方便了用户,也增加了CPU供电的安全性;动态供电使供电电压恰好满足CPU需求,不仅提高了系统稳定性,还降低了CPU功耗。除此以外,作为一种智能化供电技术,动态供电技术对实现过流保护和过热保护等保护功能也更加方便了。

参考文献:
1. Intel Company, Voltage Regulator-Down (VRD) 10.0 Design Guide, 2004-2
2. 陈忠民,全面掌握Prescott主板最新供电技术,微型计算机,2004,(13)
3. 陈忠民,主板供电技术面面观,微型计算机,2003,(15)

关键字:功耗  主板  电压  引脚 引用地址:基于自适应技术的动态CPU供电单元

上一篇:嵌入式流处理器
下一篇:MCU 中输入/输出口的使用

推荐阅读最新更新时间:2024-05-13 18:16

德州仪器推出全新隔离产品系列,可将高电压应用的使用寿命延长至 40 年以上
• 作为光耦合器的引脚对引脚替代产品,可改善信号完整性并降低高达 80% 的功耗 • 全新光耦仿真器利用德州仪器基于 SiO2 的专有隔离技术,可提高终端产品在整个生命周期内的性能 中国上海(2023 年 9 月 20 日) - 德州仪器 (TI) 今日推出基于信号隔离半导体技术的全新光耦仿真器产品系列,旨在提高信号完整性、降低功耗并延长高电压工业和汽车应用的使用寿命。这是德州仪器 第一款与业内常见的光耦合器引脚对引脚兼容的光耦仿真器,可无缝集成到现有设计中,同时能充分发挥基于二氧化硅 (SiO2) 的隔离技术的独特优势 。 德州仪器接口产品总经理 Tsedeniya Abraham 表示:“随着电气化进程的
[电源管理]
德州仪器推出全新隔离产品系列,可将高<font color='red'>电压</font>应用的使用寿命延长至 40 年以上
如何解决智能机器人主板散热问题
随着“新基建”快进键的按下,得益于网络、和人工智能算法等技术的支持,机器人正迎来一轮新的发展。智能家居机器人、无人配送机器人、智能指引机器人等等,一系列贴近日常生活的机器人成为令人瞩目的新宠。虽然远不及故事中虚构的拟人机器,但真实的机器人已在智能生产的重要环节取代人工,成为有效率的生产方式。 目前投入市场的智能机器人以实现具体功能为主,涉及智能识别和交互的机器人通常以接入算法芯片实现。在机器人主板上会有和处理芯片,使用过程中会产生大量的热量,若不及时将热量散发,设备会持续升温,很容易造成器件过热损坏。 与大多数电子产品一样,机器人也需要通过散热来保持稳定的运行,其主板控制器结构上会根据发热源位置装配散热器,中间就需要导
[机器人]
AD7794在高精度低功耗测量装置中的应用
1 引言   现代电子测量中,对测量精度有着越来越高的要求,同时,由于野外电池供电的原因,对整体电路的功耗也有着高要求。比如,在差压式流量测量/计量中,压力传感器给出的信号十分微弱,这对直流放大器和ADC电路提出了很高的要求。传统的精密数据转换和系统稳定性方案不能兼备低噪声、低漂移和低功耗特性,往往不得不牺牲某些性能。AD7794针对工业测量领域的这种特殊而义普遍的需求,采用了一种结合斩波放大电路(抑制漂移)、乏一AADC(提高精度和抑制噪声)和低功耗的复合结构,形成具有兼备上述优秀性能的较为理想了专用器件。同时器件体积极小,便于在各种设备中使用。   本文根据作者在内锥式智能工业燃气表的实际设计工作中的经验,总结出高精
[模拟电子]
【视频】Microchip低功耗技术介绍
Microchip低功耗技术介绍
[单片机]
采用箝位电路抑制车载电压瞬变
由车载电气系统供电的电路必须能耐受严酷的环境。电压瞬变有可能是随机的,或重复性的。重复性的瞬变(例如引擎的转动)可能产生数百伏特的电压,但对于车载电子组件来说,最为剧烈的瞬变来源于负载倾卸(load dump)。 负载倾卸是急促的能量卸放,由于交流电机在为负载提供充电电流期间电池突然性的断开所导致。并且,车辆“借电”(jump starTIng,又称跳线跨接启动)也有可能因使用串联堆积式电池而导致一种过压状态。其它的瞬变可能源于点火系统的噪声、继电器开启及关闭以及诸如保险丝熔断等单稳态事件。 值得庆幸的是,最为剧烈的大能量瞬变可通过核心的抑制器进行处理;典型的抑制器被置于重要的(以及昂贵的)组件附近,具有高阻抗的通路连接到卸放源
[嵌入式]
快速了解奥迪E-tron车型的高电压结构与原理
根据奥迪原厂自学资料整理,用图解方式和大家分享奥迪全新Q2L E-tron的高电压部件结构组成和作用。 从基本层面了解并认识奥迪Q2L车型的电力驱动系统结构组成,为基本维修保养工作的开展做好准备。 希望通过本文,可以帮助大家快速了解奥迪E-tron车型的高电压结构与原理。 一、高电压部件概览 1、高电压系统的连接关系图 2、高电压系统连接导线概览 二、高电压部件 1、高电压充电接口 直流充电接口UX4 交流充电接口UX5 2、高电压充电器AX4 2.1 脉冲逆变器 将交流电变成直流电提供给高压蓄电池 2.2 高电压充电器控制单元J1050 3、高电压加热器Z115 3.1 加热冷却液,为车内提供暖风热量 3.
[嵌入式]
快速了解奥迪E-tron车型的高<font color='red'>电压</font>结构与原理
驱动容性负载的动态功耗
逻辑电路每一次跳变,都要消耗超过它正常静态功耗之外的额外的额外功率。当以一个恒定速率循环时,动态功耗等于 功耗=周期频率*每个周期额外的功率 动态功耗最常见的两个起因是负载电容和叠加的偏置电流。 图2.2说明了驱动一个电容负载时的情形。在T1时刻电路A闭合,电容充电至VCC。电容充电时,电流急刷涌过驱动电路的限制充电电阻。这个电流浪涌消耗了能量。在T2时刻电路开关B闭合,电容通过驱动电路的限制放电电阻进行放电。这个电流浪涌同样消耗了能量。如果重复这个实验,可以发现电容充电消耗的能量正好等到于电容放电消耗的能量,两个能量的和等于。 其中,C=电容、F       VCC=充电电压,V 如果可以FHZ频率循环运
[模拟电子]
Atmel低功耗8位tinyAVR MCU ATtiny441和 ATtiny841问世
Atmel公司宣布推出ATtiny441和 ATtiny841,进一步拓展其低功耗8位tinyAVR MCU产品组合。 Atmel是8位MCU的市场领导者,而ATtiny441/841系列的发布进一步体现了其致力于持续投资这一市场的承诺。凭借公司在MCU领域确立的二十多年的领先地位,此次发布的产品整合了各种易用的功能、工具和外设,从而提高了系统的集成度和性能,并降低了功耗。 这些超低功耗14 引脚tinyAVR MCU的封装更小,模拟和通信能力更强,而且系统成本也更低。Atmel的8位AVR MCU是计算机配件、恒温器、个人医疗配件等众多经济高效的消费应用的理想选择。 Atmel公司闪存式MCU产品总监Ingar Fr
[单片机]
小广播
最新应用文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved