数字信号处理技术在电力网无功补偿中的应用

发布者:创新脑细胞最新更新时间:2006-05-16 来源: 仪表技术关键字:采样  电压  电容  电流 手机看文章 扫描二维码
随时随地手机看文章

1系统设计

  图1是并联电容器静止补偿器(SVC)系统原理简图。其中检测控制器部分是系统的核心模块。该模块由80C196KC MCU、电压和电流的信号调理电路、输出报警、控制输出电路及为80C196KC工作而扩展的程序及数据存贮器等部分构成。80C196KC为16位单片机,运行速度高,数据处理快,并有很强的中断功能。另外80C196KC上自带8路10位A/D转换器,其分辨率及精度足以满足工业控制的精度要求。

          

  三相电压、电流信号通过电压、电流互感器模块送到检测控制器,通过信号调理电路进入80C196KC的A/D转换通道,A/D转换通道中的6个通道用于三相电压、电流的检测,一个通道用于检测零线的状态,监测电网的三相平衡情况。

  80C196KC通过对量化的电压、电流信号的处理,得到电力网各相的峰值、有效值、功率及功率因数后,决策是否进行电容的投、切或报警,并通过电容投、切执行器实现电容的投、切。电容投、切执行器模块负责在电压过零点对补偿电容进行投、切,以降低投、切电容对电网的影响并保证系统电容器组的安全。

  2系统功能的实现

  实现系统功能的工作流程如图2所示。80C196KC经初始化后,开始对7个A/D通道进行周期采样。实现原理如下:利用80C196KC的HSO触发T2(定时器2)复位事件,由该事件产生一个软定时器中断,在该中断服务程序中逐个通道启动A/D转换,并将A/D采样结果存入数组内(HSO触发定时中断的流程图略)。当完成一组可供80C196K CMCU处理的数据后,置采样数据完成标志 ,接着进行下一轮数据采样。

  采样数据要能够实现80C196KC对被监测信号的时域和频域分析的需要。其中包括电压峰值的检测、各相电压、电流有效值的计算、各相电压电流之间相位差的计算,从而计算出各相交流电的无功功率、并对各相电压、电流的谐波谱分析等。设计要求能对15次以下的谐波含有量进行分析,根据奈奎斯特采样定理,采样频率必须大于两倍信号谱的最高频率(Ωs>2Ωh),15次谐波的频率的2倍为1.5kHz;考虑到利用基-2的FFT算法,每个交流信号周期采样32点,则:
  
  满足采样定理要求。其次是采样数问题,为了提高谱线的分辨率,进行DFT的数组长度愈长愈好,但这是以消耗长时间为代价的。考虑时间因素,DFT的数组长度定在256(8个基波周期)。工作于20MHz的80C196KC进行一次DFT所需时间约为1.3s,可实现 高精度信号谱分 析。最后,A/D采样的间隔必须足够准确,这就要求HSO触发定时中断周期不受其他中断的影响。采用如下技术实现:程序中对每个高于HSO的中断源在中断服务程序中都设有进入中断标志位。在启动一个采样周期时,将这些中断标志位清零;在采样周期中,若MCU发现中断标志位不为零,则舍弃已采数据,立即重新开始新一轮采样周期。同时,在7个采样通道轮流采样期间,将所有可屏蔽中断关闭(A/D采样可用查询方式,若采用中断方式则不能关闭A/D中断),以保证采样间隔的一致性。理论和实践证明,对信号整周期的采样,可以最大程度的减小变换运算由于窗口效应带来的计算误差。

  峰值和有效值可以用采样数组中任意抽取的32点(1周期数据)计算。有效值的计算式为:
  
                    
                    

 


  接下来求各相电压和电流的相位差。这里用对基波求解相位差的方法,以消除谐波对计算的影响。由于采样信号中含有谐波成分,首先要对采样数组进行数字滤波,然后再对各相电压和电流进行循环互相关计算,得到两者之间的相位差。采用6阶IIR切比雪夫数字滤波器,截止频率设为60Hz,滤波器用Labview设计。由于IIR数字滤波器是基于无限长序列的数字滤波器,要达到理想的滤波效果,序列必须有足够长度。通过仿真,序列长度为96(点)时,提取后32点作为滤波结果,再进行互相关计算,所求电压、电流间的相位差精度可以达到设计要求。利用互相关法计算两个正弦信号相位差的原理为:

  设两个信号都是正弦函数,且频率相同;相位差为
  
  式中n1和n2为信号噪声。由于信号和噪声,噪声和噪声之间是相互独立的,式(1)的计算结果为:
  
  式(2)表明:两相频率相同的信号,其互相关函数与两信号间的相位差成余弦关系。根据上面的分析,实用中采用32点电压和电流信号的循环互相关运算,其算法为:
  
  序列y每与序列x进行一步互相关运算后,将列首的数移到列尾,再进行第下一步互相关运算,直到k到N-1为止。为加快运算速度,根据互相关函数的性质,具体步骤如下:

  ① 将电压数组序列取定,电流数组序列移位并与电压序列进行互相关运算,每计算一步,都与上一步的运算值进行比较,如果运算值变化趋势是从小到大,再从大到小,根据最大点处电流序列移位的步数,就可算出电压与电流间的相位差。此种情况电流是落后的(感性负载)。设两序列在第k步互相关运算取得最大值,则电压与电流的相位差为:
  

  ② 若k超过8(N/4)互相关运算仍未取得最大值,则应沿相反方向找互相关运算最大值(因为相位差不可能达到π/2)。这时电流数组序列取定,电压数组序列移位并与电流序列进行互相关运算,这种情况下的运算结果是超前的(容性负载)。

  ③ 若经过①、②两步都找不到互相关运算最大值,则需要在相位差的零点进行分段抛物插值,确定两信号之间的相位差,处理原理及方法见④。

  ④ 相位差的分辨率问题:由式(3)计算出的相位差,其分辨率为或0.19635(弧度)=11.25(度),这个分辨率是极低的,远不满足设计精度要求。通过增加周期信号的采样点数可提高角度的分辨率,但受A/D采样速度的限制。可行的方法是采用分段插值的方法。由于互相关函数与两信号间的相位差成余弦关系,在极大值附近与抛物线很接近,所以,采用分段抛物插值的方法,能够取得最佳效果。具体做法是:

  取三点xk-1,xk,xk+1,且互相关运算在点xk取得最大值,按下列公式进行插值:
  
  φk+1对式(4)求导并令φ′=0,解出相位差的插值点偏移量:
  
  对96个采样点进行数字滤波后,用式(6)对互相关结果进行插值,计算所得两个信号相位差的精度在0.1°左右,满足设计的精度要求。

  根据式(6)可以判定电网各相的容性或感性,确定补偿电容的投、切方向;结合电压、电流有效值的计算公式,就可确定补偿电容的投、切量。

  系统总谐波电压畸变率定义为:
  
  式(7)中的Um为各次谐波电压分量的均方根值,U1为基波电压的均方根值。同理可求得总谐波电流畸变率。国标规定,低压电网(<1kV)总谐波电压畸变率(THD)小于5%。

  控制器在完成无功功率检测计算后,按时间抽取基-2 FFT算法“分次”对各相电压、电流进行变换,求出基波及各次谐波分量值,进而计算出总谐波电压、电流畸变率,根据上限确定是否报警或投、切补偿电容。

  所谓“分次”是指控制器每做一次三相无功功率的计算循环,只对一相电压或电流进行DFT变换,即6个工作循环才完成一次完整的谐波谱分析,目的是提高系统对无功功率判断的速度,更快地对功率因数进行补偿。

  3总结

  基于80C196KC MCU的无功功率检测控制器利用数字信号处理的理论,在技术上实现了数字滤波、相位差的计算和谐波谱分析等。本检测控制器通过试运行,效果良好,在功能上和精度上实现了设计要求。对电网波动不太剧烈的场合,控制效果令人满意。为了更快地跟踪并补偿电网的无功成分,可考虑用DSP芯片,以提高处理的速度。为了得到各信号间的相关特征,可选用高速、高精度、多通道同步采样A/D转换器,以进一步提高补偿效果。

  参考文献

[1] 靳龙章,丁毓山.电网无功补偿实用技术[M].北京:中国水力水电出版社,2001.

关键字:采样  电压  电容  电流 引用地址:数字信号处理技术在电力网无功补偿中的应用

上一篇:中断在TMS320C54x系列DSP中的应用
下一篇:带RF输出的全数字调制器设计

推荐阅读最新更新时间:2024-05-13 18:11

基于SPCE061A单片机的数控直流电流源设计
本文设计的数控直流电流源能够很好地降低因元器件老化、温漂等原因造成的输出误差,输出电流在20mA~2000mA可调,输出电流可预置、具有“+”、“-”步进调整、输出电流信号可直接显示和语音提示等功能。 硬件电路采用凌阳单片机SPCE061A为控制核心,利用闭环控制原理,加上反馈电路,使整个电路构成一个闭环,在软件方面主要利用PID算法来实现对输出电流的精确控制。该系统可靠性高、体积小、操作简单方便、人机界面友好。   系统硬件实现方案   本设计采用单片机作为主要控制部件,通过键盘预置输出电流值并采用液晶模块实时显示。整个系统硬件部分由微控制器、电压-电流转换、键盘、显示、直流稳压电源和语音提示等模块组成。系统组成
[单片机]
基于SPCE061A单片机的数控直流<font color='red'>电流</font>源设计
电压容限原理及其它介绍
电压容限是逻辑驱动器的保证输出与逻辑接收器在最坏的情况下的灵敏度之间的差值。工作基于接收电压的逻辑系列产品都有电压容限,如同光学逻辑器件有光子容限,或者机械设备在BABBAGE引擎中有机械联运容限一样。 图2.15举例说明了MOTOROLA 10KH射极耦合逻辑门电路在25℃环境温度条件下的电压容限,这此逻辑门电路都是对输入电压敏感,保证0和1转换的电压门限在图中以VOL MIN和VIH MAX数值形式表示。接收到的电压低于VIL MIN则保证为逻辑0响应,高于VM MAX则保证为逻辑1响应。落在两个门限之间的接收电压可能被接收电路判决为1,也可能为0,或者为一个不确定状态。 VOL MIN意味着,对于所有的门电路,它
[模拟电子]
用万用表检测单相异步电动机电容器好坏方法
对怀疑有故障的器用螺丝刀或导线将两端短接放电,然后将其拆下,用r×10k或r×1k挡进行测量,两表笔分别接在电容器的两端,根据表针摆动的情况来进行判断。 (1)如果指针先大幅度摆向电阻零位,然后慢慢地返回到数百千欧位置,说明电容器完好。 (2)如果指针不动,则说明电容器有开路故障。 (3)如果指针摆到电阻零位后不返回,说明电容器内部已击穿损坏。 (4)如果指针摆到刻度盘上某个较小电阻处,不能返回,说明电容器泄漏电流较大。 (5)如果指针能摆动和返回,但第一次摆幅小,说明电容器容量已减小。 (6)将万用表的转换开关拨到r×10k挡,用表笔测量电容器两引线对外壳电阻。如果电阻为0ω,说明电容器电极与其外壳之间已被击穿短路。 对
[测试测量]
钳形电流表优势
钳形电流表最大的利益是能够在不断电的状况下丈量电流。钳形电流表首要分为指针式和数字式两大类。钳形电流表按效果和用处的纷歧样可分为专门测沟通的互感器式钳形电流表和交直流两用的电磁系钳形电流表。 通常在丈量电流时需求将被测电路断开,才干将电流表或电流互感器的一次绕组接到被测电路中。而运用钳形电流表,则无需断开被测电路就能够丈量被测电流。钳形电流表尽管精确度等级不高,通常为2.5级或5.0级,但因其运用便当,故而得到了广泛的运用。钳形电流表通常用于丈量电压不逾越500V的负载电流。常用的钳形电流表按其构造办法纷歧样,分为互感器式和电磁式两种。其间有只测沟通电流的T301型钳形电流表、既测沟通电流又测沟通电压的T302型钳形电流表及MG
[测试测量]
石墨烯在室温和普通光照下可产生电流
    石墨烯再次给人们带来惊喜。美国麻省理工学院及哈佛大学的研究人员发现,石墨烯可以对光产生不同寻常的反应,在室温和普通光照射下,就可以发生热载流子效应,产生电流。这一发现不仅为石墨烯再添新奇属性,更有希望使其在太阳能电池、夜视系统、天文望远镜及半导体传感器等应用领域发挥作用。该研究发表在近期出版的《科学》杂志上。   研究人员在实验室制造了复杂的石墨烯纳米P-N结,利用850纳米的激光照射石墨烯P-N结介面,并测量激光照射点产生的光电流。结果发现,随着激光强度的增加,特别是在低温的条件下,可取得最大为5毫安/瓦(mA/W)的光电流,这一数值比以前的石墨光电器件高6倍。   热载流子效应并不新奇,但通常情况下,需要在接近绝对零度或
[手机便携]
改进低值分流电阻的焊盘布局,优化高电流检测精度
电流检测电阻有多种形状和尺寸可供选择,用于测量诸多汽车、功率控制和工业系统中的电流。使用极低值电阻(几mΩ或以下)时,焊料的电阻将在检测元件电阻中占据很大比例,结果大幅增加测量误差。高精度应用通常使用4引脚电阻和开尔文检测技术以减少这种误差,但是这些专用电阻却可能十分昂贵。另外,在测量大电流时,电阻焊盘的尺寸和设计在确定检测精度方面起着关键作用。本文将描述一种替代方案,该方案采用一种标准的低成本双焊盘检测电阻(4焊盘布局)以实现高精度开尔文检测。图1所示为用于确定五种不同布局所致误差的测试板。 图1. 检测电阻布局测试PCB板。 电流检测电阻 采用2512封装的常用电流检测电阻的电阻值最低可达0.5 mΩ,其最大功
[测试测量]
改进低值分流电阻的焊盘布局,优化高<font color='red'>电流</font>检测精度
混合超级电容:超级电容和锂电池组合?
手机没电了怎么办?当然是要充电啦!为什么手机没电需要充电?因为手机是电子产品,是靠着电能进行工作,没有电,手机无法开机和使用。其它电子产品也是一样都需要依靠电能进行工作。电子元件中能为电子产品提供电能的储能装置有电池和电容器。 电子元器件中装有电荷的容器称为电容器,电容器按材料不同分为安规电容,陶瓷电容,薄膜电容,超级电容。这些电容器中,超级电容的优势是静电容量大,而且绿色环保无污染,对环境友好,在市场上是重要的电子基础元件。 在电子元器件中能大量储存能量,用作电力能源的有超级电容和电池。电池在生活中很常见,不论是电脑、遥控器、还是玩具等多数用电池提供能源运行,常用的电池就是锂电池。超级电容和其它电容相比,静电容量大,但是
[嵌入式]
混合超级<font color='red'>电容</font>:超级<font color='red'>电容</font>和锂电池组合?
Vishay发布输出电流高达1A的集成功率光敏
      日前,Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,推出两款新的集成功率光敏,分别是输出电流为0.9A的VO2223和输出电流为1A的VO2223A,扩充了其光电产品组合。这些新款功率光敏集成了以往需要由光敏和电源TRIAC两个器件完成的功能。由于不需要采用外部功率TRIAC,这些器件可节省电路板空间和降低成本。这些光耦产品采用8引脚的DIP封装,可保护人体免受电击,在家电和很多其他系统中,可对低压控制电路与高压电源进行光电隔离,避免出现过流情况。                       VO2223和VO2223A的额定阻断电压为600V,可隔离120V和2
[电源管理]
Vishay发布输出<font color='red'>电流</font>高达1A的集成功率光敏
小广播
最新应用文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved