LCoS彩色时序控制器的ASIC设计

发布者:advancement3最新更新时间:2006-05-31 来源: 电子设计应用关键字:时序  电路  寄存器 手机看文章 扫描二维码
随时随地手机看文章

引言

基于头盔显示器对便携性的要求,要实现微型化和低功耗,将彩色时序控制器设计为单片的ASIC是较好的解决方案。本文正是针对应用LCoS(Liquid Crystal on Silicon)微型显示器的HMD,进行其中彩色时序控制器的ASIC设计。
  
彩色时序原理

彩色时序方法的原理是:首先把每场图像中的红绿蓝信息分离出来,然后在每一场的时间内分3个子场分别把红绿蓝图像写入显示屏,在每个子场的扫描过程结束以及液晶反应之后依次点亮红绿蓝3色光源,从而在一场的时间内依次显示红绿蓝3幅图像,利用人眼睛的特性合成彩色。


图1  LCoS器件结构截面图和光路图


彩色时序法的优点是不使用彩色滤色片,一个物理像素也就是实际的一个像素,有利于在同样尺寸的显示屏上实现更高的分辨率。与空间滤色器的方法相比,使用彩色时序的方法使分辨率提高为原来的3倍,即如果在相同的分辨率下,其显示屏尺寸仅为原来的1/3。由于彩色时序是将每场的信息分3个子场在一场时间内写入显示屏,这就使场频提高为原来的3倍,相应的,点时钟频率也提高为原来的3倍。减小显示屏的面积也需要提高频率,这是基于单晶硅的高迁移性能而实现的。同时,场频和点时钟频率的提高也给显示器的视频系统设计提出了更高的要求。
  
LCoS微型显示技术

LCoS微型液晶显示技术是采用与超大规模集成电路兼容的设计和制造方法将硅基显示矩阵和相关驱动电路集成在一起所构成的微型显示芯片。LCoS属于反射式微型液晶显示技术,其结构是在单晶硅衬底上,利用CMOS工艺把显示矩阵和驱动电路集成在一起, LCoS的像素电极是用铝制作的反射镜面,在像素电极下面设置有金属挡光层,可以防止像素驱动晶体管受强光照射。LCoS的结构示意图如图1所示,液晶层的一侧是具有反射电极的LCoS芯片基板,另一侧是ITO玻璃,中间的液晶层厚度一般为2~3mm。

LCoS器件中光的传播路线同样如图1所示:当光源发出的光到达PBS(Polarization Beam Splitter,偏振分光镜)时P极的光透过, S极光被反射到达铝反射镜,此时加在铝反射镜电极和ITO电极之间的电压将使S极光转换为P极光,所以被铝反射镜反射的光为P极光,可以透过PBS投射到人的瞳孔(NTE近眼显示)或者大屏幕(投影显示)。


图2  LCoS彩色时序控制器电路方案

图3 时序信号产生电路框图


LCoS芯片不仅解决了显示矩阵与驱动电路之间的连接问题,而且与穿透式LCD相比,具有更高的分辨率、光利用效率和更成熟的制造技术。

LCoS彩色时序控制器的电路设计

总体结构设计

本文所设计的LCoS彩色时序控制器ASIC可以驱动分辨率最高为1280×1024的LCoS微型显示屏,其功能是:输入24位的数据信号(R:G:B=8:8:8)以及时序信号VS、HS、CLK等,将数据信号R、G、B按照一定的数据变换格式分别写入一组存储器的3个区,而同时读另一组存储器,按顺序将R、G、B三个子场的数据送入LCoS屏实现彩色时序的显示。另外,还要提供LCoS屏所需要的同步信号以及点时钟信号等。要完整地实现该过程,彩色时序控制器必须包括数据变换电路、时序信号产生电路和存储控制电路等3部分。其总体电路框图如图2所示,下面将介绍各部分电路的具体功能和设计。

数据变换电路的设计

由于LCoS屏的数据驱动电路采用了4组移位寄存器,2组从屏的上方写入数据,另2组从屏的下方写入数据,所以需要每次写入4个各8位的像素数据。这种驱动方式使得LCoS屏所需要的点时钟频率降为只采用1组移位寄存器作数据驱动时的1/4。但是由于写入方式的改变,要求对原来每个像素24位(R:G:B=8:8:8)的数据格式进行变换,需要变换为4个像素各32位的R、G、B分别写入LCoS屏。8位移位寄存器的思路很好地实现了数据从24位到32位的变换。

这种移位寄存器的方法实现了R、G、B从8位到32位的变换,还需要分别在每4个时钟周期的第1、2、3个周期取第一、第二、第三组移位寄存器的数据,而在第4个周期不取数据。为了实现这种取数方式,本文设计了一个能够产生3个标志信号的flag电路,通过3个标志信号来控制取走3组移位寄存器的数据。

时序信号产生电路的设计

时序信号产生电路的主要功能是产生LCoS屏所需要的一些接口时序信号,其结构框图如图3所示。

在这里,通过两个分频电路对CLOCK信号进行合适的分频,分别产生子场行同步信号S_HS和子场场同步信号S_VS;时钟屏蔽是为了产生点时钟L_CLOCK,使得在没有数据写入的时间里可以停止点时钟L_CLOCK,从而有效降低了LCoS屏的功耗;点灯控制信号产生部分获得三色LED光源的点灯控制信号RLED、GLED和BLED信号。

存储器控制电路的设计

存储器控制电路的结构框图如图4所示,该部分电路所实现的主要功能是产生21位地址信号、写控制信号W、读控制信号G,可以分为写地址发生器、读地址发生器和读写切换开关3部分。

写地址发生器的核心是一个21位计数器和一个加法器,在彩色时序显示存储中,需要将每组存储器分为3个区,分别存储红绿蓝图像数据,每一帧彩色图像分解为3帧分别存储。这样每个区需要的存储空间为1280×256=327680,所以写地址发生电路实际上可以使用一个21位的计数器来产生地址信号并分别与0、327680、655360相加而实现。这样在一帧的时间之内,分别存储了各一帧的红绿蓝图像。


图4 SRAM控制电路结构框图


读地址发生器的功能实际上就是产生一个不断递增的地址信号,这可以通过计数器来实现:根据行同步信号开始产生地址,根据场同步信号开始读取数据。

读写切换是实现实时视频显示的关键所在,在一帧的时间里,从一组存储器向LCoS显示屏输出图像数据,同时通过数据变换模块往另一组存储器里写图像数据,在下一帧时间里将读写切换过来,这样不断交替进行,不断向显示屏输出连续的视频数据,实现实时显示。

LCoS彩色时序控制器的版图设计

本文采取全定制设计技术进行该电路的版图设计,首先根据0.35mm CMOS工艺建立标准元件库,使用Tanner Research 公司的L-EDIT进行版图的生成和后仿真验证,最终获得了整个LCoS彩色时序控制器ASIC的版图。芯片核心部分大小约为0.4mm×0.5mm,最高工作频率可达100MHz。

关键字:时序  电路  寄存器 引用地址:LCoS彩色时序控制器的ASIC设计

上一篇:采用适合工艺技术制造硅MEMS振荡器
下一篇:IC封装相关的一些基础材料

推荐阅读最新更新时间:2024-05-13 18:12

使用单片机实现复位电路的资料详细说明
单片机现了“死机”、“程序跑飞”等现象,这主要是单片机复位电路设计不可靠引起的。图1是一个单片机与大功率LED八段显示器共享一个电源,并采用微分复位电路的实例。在这种情况下,系统有时会出现一些不可预料的现象,如无规律可循的“死机”、“程序走飞”等。而用仿真器调试时却无此现象发生或极少发生此现象。又如图2所示,在此图中单片机复位采用另外一种复位电路。在此电路的应用中,用户有时会发现在关闭电源后的短时间内再次开启电源,单片机可能会工作不正常。这些现象,都可认为是由于单片机复位电路的设计不当 影响单片机系统运行稳定性的因素可大体分为外因和内因两部分: 1、外因 射频干扰,它是以空间电磁场的形式传递 在机器内部的导体(引线或零件引脚)
[单片机]
使用单片机实现复位<font color='red'>电路</font>的资料详细说明
一款采用微处理器控制方式的洗碗机电路设计原理图
  采用微处理器控制方式的洗碗机。其使用电压220V。清洗泵电机功率120W,排水泵电机功率60W,发热器功率800W。采用喷臂喷射洗涤,设预洗、清洗、中洗、强洗四种洗法;洗涤时间为清洗档20—25min,中洗、强洗档35~70min;利用余热干燥餐具。 原理分析:   (1)220V市电电源加至电源变压器T的初级,降压后由次级输出16V交流电压。该电压经整流器VD1—VD4桥式整流、电容C1和C2滤波后,产生直流电压,再经三端稳压集成电路IC4稳压,产生12V直流电压,供功率驱动集成电路IC2及控制继电器K1~ K5用电。同时,该直流电压再经三端稳压集成电路IC5稳压,产生5V直流电压,作为微处理器IC1、IC3及蜂鸣器HA的工
[电源管理]
一款采用微处理器控制方式的洗碗机<font color='red'>电路</font>设计原理图
仪表放大器电路原理、构成及电路设计(二)
  方案4 由一个单片集成芯片AD620实现,如图4所示。它的特点是电路结构简单:一个AD620,一个增益设置电阻Rg,外加工作电源就可以使电路工作,因此设计效率最高。图4中电路增益计算公式为:G=49.4K/Rg+1。 实现仪表放大器电路的四种方案中,都采用4个电阻组成电桥电路的形式,将双端差分输入变为单端的信号源输入。性能测试主要是从信号源Vs的最大输入和Vs最小输入、电路的最大增益及共模抑制比几方面进行仿真和实际电路性能测试。测试数据分别见表1和表2。其中,Vs最大(小)输入是指在给定测试条件下,使电路输出不失真时的信号源最大(小)输入;最大增益是指在给定测试条件下,使输出不失真时可以实现的电路最大增益值。共模抑制比由公
[模拟电子]
仪表放大器<font color='red'>电路</font>原理、构成及<font color='red'>电路</font>设计(二)
SiC414应用电路
6 A, 28 V Integrated Buck Regulator with 5 V LDO FEATURES SiC414 datasheet,pdf • High efficiency 95 % • 6 A continuous output current capability • Integrated bootstrap switch • Integrated 5 V/200 mA LDO with bypass logic • Temperature compensated current limit • Pseudo fixed-frequency adaptive on-time control
[电源管理]
SiC414应用<font color='red'>电路</font>
脱机式LED照明开发挑战高 驱动器电路设计须谨慎
  当人们越来越关注传统照明方法对于环境的影响时,发光二极管( LED )的价格也不断地持续下降,因此,就许多脱机式应用而言, 大功率LED 正在迅速地成为流行的照明解决方案。 高亮度LED 能节省能源、具有长寿命并对环境有利,这些特点不断促使种类繁多的 固态照明 (SSL)应用的发展。根据市场调研机构Strategies Unlimited报告 显示 ,到2010年底,高亮度LED的市场规模已经达到82亿美元,预计至2015年将成长到200亿美元以上。过去几年,用于高画质电视(HDTV)显示器背光照明的LED一直是LED市场成长的主要动力。不过,随着LED一般照明应用在商用和住宅环境逐渐盛行,LED的成长将会显著加速。   与
[电源管理]
脱机式LED照明开发挑战高 驱动器<font color='red'>电路</font>设计须谨慎
智能手机自动充电与断电电路设计
  大部分手机用户在给手机充完电后,为图省事,都不拔插出插销,以便下一次充电。这既耗电浪费,又造成巨大的安全隐患。根据最近诺基亚的调查数据可知,手机在空载模式下(充电器插接在墙壁插座,但并未与手机连接)所消耗的电能占到其电能使用总量的 60% 以上,也就是说手机耗电的 3/4 以上都是由于手机充满电以后,用户不拔充电器插销造成的,目前中国有六亿多手机用户,这是一种极大地浪费。据初步统计,手机充电后不拔插销,每年将额外耗电逾 20 亿度,相当于葛洲坝水电站发电量的4%。   较现有断电充电器而言,本产品的优点在于不仅能够在充满电的情况下自动断电,而且在人为拔掉手机的时候也能自动断电,实现自动断电。图 1 为内部电路图。   工作原
[电源管理]
智能手机自动充电与断电<font color='red'>电路</font>设计
零电压开通(ZVS(PWM DC/DC变换器电路
零电压开通(ZVS(PWM DC/DC变换器电路图 拓扑结构:Buck DC/DC ZVS PWM 变换器。主开关T1(包含反并联二极管D1),辅助二极管T2(D2是T2的串联二极管)。 假设:二极管开关管均为理想器件;电感、电容均为理想元件;Lf足够大,Lf Lr,这样在一个开关周期中,输出电压为Vo不变,If保持为Io不变,这样Lf和Cf以及负载电阻可以看成一个电流为Io的恒流源。 开关状态:在一个开关周期Ts中,变换器有五种开关状态,每种开关状态对应一个等效电路。 工作原理: 关断T2后引发LrCr谐振,使主开关管T1的电压vT=0。再对T1施加驱动信号实现T1的零电压开通。 开关状态1:t0
[电源管理]
零电压开通(ZVS(PWM DC/DC变换器<font color='red'>电路</font>图
小广播
最新应用文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved