0 概 述
在工业过程控制、医疗器械、电子称及多媒体等许多应用中,对系统的速度、功耗及成本等性能的要求越来越高。自上世纪70年代中期以来,大多数单片模数转换器采用了积分、逐次逼近或并行比较技术,进入80年代Σ-△技术进一步扩展了选择的余地。
Σ-△转换器具有相对简单的结构,又称为过采样转换器。这种转换器由Σ-△调制器及连接于其后的数字滤波器构成(图1)。调制器的结构非常近似于双斜率ADC,包括一个积分器和一个比较器,以及含有一个1位DAC的反馈环。这个内置的DAC仅仅是一个开关,它将积分器输入切换到一个正或负的参考电压Σ-△ ADC还包括一个时钟单元,为调制器和数字滤波器提供适当的定时。
窄带信号送入Σ-△ ADC后被以非常低的分辨率(1位)进行量化,但采样频率却非常高,如2MHz或更高。经数字滤波处理后这种过采样被降低到一个比较低的采样率 ,如8kHz左右,同时ADC的分辨率(即动态范围)被提高到16位或更高。这种Σ-△技术在模数转换器市场上占据了很重要的位置。它具有三个主要优势:
(1) 低价格、高性能
(2) 集成化的数字滤波
(3) 与DSP技术的兼容性便于实现系统集成
AD7705/7706是利用Σ-△转换技术实现了16位无丢失代码性能。该器件可以接受直接来自传感器的低电平的输入信号,然后产生串行的数字输出。AD7705/7706只需2.7~3.3V或4.75~5.25V单电源。AD7705是双通道全差分模拟输入,而AD7706是3通道伪差分模拟输入,二者都有一个差分基准输入。当电源电压为5V、基准电压为2.5V时,这二种器件都可将输入信号范围从0~20mA到0~2.5V的信号进行处理。还可以处理±20mV~±2.5V的双极性输入信号。当电源电压为3V、基准电压为1.225V时,可处理0~10mV到0~1.225V的单极性输入信号,它的双极性输入信号范围是±10mV到±1.225V对于AD7705是以AIN(-)输入端为参考点,而AD7706是COMMON输入端。AD7705/7706是用于智能系统、微控制器系统和基于DSP系统的理想产品。其串行接口可配置为三线接口。增益值、信号极性以及更新速率的选择可用串行输入口由软件来配置。该器件还包括自校准和系统校准选项,以消除器件本身或系统的增益和偏移误差。
1 AD7705/7706的特点
(1) AD7705:2个全差分输入通道的ADC
(2) AD7706:3个伪差分输入通道的ADC;16位无丢失代码;0.003%非线性
(3) 可编程增益:1~128
(4) 三线串行接口SPITM、QSPITM、MICROWIRETM和DSP兼容
(5) 有对模拟输入缓冲能力
(6) 2.7~3.3V或4.75~5.25V工作电压
(7) 3V电压时,最大功耗为1mW
(8) 等待电流的最大值为8mA
(9) 16脚DIP、SOIC和TSSOP封装
2 AD7705/7706的引脚排列及功能
AD7705/7706的引脚排列如图2,引脚说明见表1。
3 AD7705/7706片内寄存器
AD7705/7706包括6个用户可通过串行口访问的片内寄存器。
第一个是通讯寄存器,它管理通道选择,决定下一个操作是读操作还是写操作,以及下一次读或写哪一个寄存器。所有与器件的通讯必须从写通讯寄存器开始。上电或复位后,器件等待在通讯寄存器上进行一次写操作。
第二个寄存器是设置寄存器,决定校准模式、增益设置、单/双极性输入以及缓冲模式。
第三个寄存器是时钟寄存器,包括滤波器选择位和时钟控制位。
第四个寄存器是数据寄存器,器件输出的数据从这个寄存器读出。
第五个寄存器是零标度校准寄存器,AD7705/7706包含几组独立的零标度寄存器 ,每个零标度寄存器负责一个输入通道。它们都是24位读/写寄存器。
第六个寄存器是满标度校准寄存器,AD7705/7706包含几组独立的满标度寄存器 ,每个满标度寄存器负责一个输入通道。它们都是24位读/写寄存器。
4 AD7705/7706的接口时序
如前所述,AD7705/7706的编程功能用片内寄存器的设置来控制。对这些寄存器的读/写操作通过器件的串行接口来完成。
AD7705/7706的串行接口包含5个信号:CS、SCKL、DIN、DOUT和DRDY。DIN线用来向片内寄存器传送数据,而DOUT线用来访问寄存器里的数据。SCLK是串行时钟输入,所有的数据传输都和SCLK信号有关。DRDY线作为状态信号,以提示数据什么时候已准备好从寄存器读数据。输出寄存器中有新的数据时,DRDY变为低电平。CS是片选信号,用来选择器件。图3和图4是AD7705/7706的接口时序图。图3是从AD7705/7706的输出移位寄存器读数据的时序图。图4则是向输入移位寄存器写入数据的时序图。
5 AD7705/7706在智能仪器仪表中的应用
AD7705提供双通道、低成本、高分辨率模数转换功能。由于采用Σ-△结构实现模数转换,使得该器件在噪音环境下能免受干扰,因此它很适合于工业控制用。同时它还提供了可编程的增益放大器,数字滤波器和校准选项。因此,它提供比普通的积分ADC更多的系统功能,而且没有必要有高质量的积分电容器的缺点。
片上PGA允许AD7705处理低至10mV(满标度)的模拟输入电压(VREF=+1.25V)。器件在非缓冲模式下工作时,差分输入使模拟输入范围的绝对值处于GND和VDD之间的任一值。由此器件允许将传感器直接与AD7705的输入端相连。下面是由本人开发的“Q-101轴瓦厚度测量仪”的具体应用。
本测量仪是采用气动测量原理进行测量。就是以空气作为介质,利用空气流动时的特性来实现机械量的测量。气动量仪按工作原理可分为流量式和压力式两类。“Q-101轴瓦厚度测量仪”采用的是压力式气动量仪,把被测量的变化转换成空气压力的变化量,然后通过测量压力信号来测量轴瓦的厚度。其原理如图5和图6所示。当经过稳压后压力为Pa的空气通过进气喷嘴,经测量喷嘴和挡板之间的间隙逸入大气时,背压Px与间隙S之间的关系如图6所示,这种背压与间隙之间的关系是一一对应的。系统组成框图如图7所示。首先,用压力传感器来测量背压Px,然后,将传感器输出的差分信号送到模数转换器(AD7705芯片)中,进行模数转换,再将得到的数字量送入单片机(采用LG公司生产的GMS97C52单片机)进行数据处理。最后,送入显示窗口(LED)。在设计制作中,应注意以下问题:
由于模拟输入和基准输入是差分的,模拟调制器的大部分电压都是共模电压,AD7705/7706的良好的共模抑制性能能消除这些共模输入信号里的共模噪声,数字滤波器能抑制供电电源产生的除了调制器采样频率整数倍的频率以外的宽带噪声。此外 ,数字滤波器还能消除模拟和基准输入信号里的噪声不使模拟调制器饱和。但是,由于它的分辨率太高,而要求的噪声电平太小,所以,必须注意接地和电路布线。
AD7705/7706的印制板电路必须按规格设计,以确保模拟区和数字区分开并各自限定在电路板上的一定区域。利用接地平面可以很容易地将它们分开。因为这样能使屏蔽性能最好。应在一个地方将模拟和数字接地平面连接在一起,以避免出现接地环路。应避免在元器件下面走数字线,因为这样会造成片内噪声成倍增加。AD7705/7706的电源线应用足够粗的,以便降低线路阻抗,同时减少电源供电的尖峰信号的影响。时钟信号不能在模拟输入信号附近通过,模拟信号和数字信号之间应避免相互交叉。所有的模拟电源都应去耦。用10μF并联一个0.1μF的陶瓷电容接GND去耦。
关键字:去耦 模数 滤波器
引用地址:AD7705/7706在仪器仪表中的应用
在工业过程控制、医疗器械、电子称及多媒体等许多应用中,对系统的速度、功耗及成本等性能的要求越来越高。自上世纪70年代中期以来,大多数单片模数转换器采用了积分、逐次逼近或并行比较技术,进入80年代Σ-△技术进一步扩展了选择的余地。
Σ-△转换器具有相对简单的结构,又称为过采样转换器。这种转换器由Σ-△调制器及连接于其后的数字滤波器构成(图1)。调制器的结构非常近似于双斜率ADC,包括一个积分器和一个比较器,以及含有一个1位DAC的反馈环。这个内置的DAC仅仅是一个开关,它将积分器输入切换到一个正或负的参考电压Σ-△ ADC还包括一个时钟单元,为调制器和数字滤波器提供适当的定时。
窄带信号送入Σ-△ ADC后被以非常低的分辨率(1位)进行量化,但采样频率却非常高,如2MHz或更高。经数字滤波处理后这种过采样被降低到一个比较低的采样率 ,如8kHz左右,同时ADC的分辨率(即动态范围)被提高到16位或更高。这种Σ-△技术在模数转换器市场上占据了很重要的位置。它具有三个主要优势:
(1) 低价格、高性能
(2) 集成化的数字滤波
(3) 与DSP技术的兼容性便于实现系统集成
AD7705/7706是利用Σ-△转换技术实现了16位无丢失代码性能。该器件可以接受直接来自传感器的低电平的输入信号,然后产生串行的数字输出。AD7705/7706只需2.7~3.3V或4.75~5.25V单电源。AD7705是双通道全差分模拟输入,而AD7706是3通道伪差分模拟输入,二者都有一个差分基准输入。当电源电压为5V、基准电压为2.5V时,这二种器件都可将输入信号范围从0~20mA到0~2.5V的信号进行处理。还可以处理±20mV~±2.5V的双极性输入信号。当电源电压为3V、基准电压为1.225V时,可处理0~10mV到0~1.225V的单极性输入信号,它的双极性输入信号范围是±10mV到±1.225V对于AD7705是以AIN(-)输入端为参考点,而AD7706是COMMON输入端。AD7705/7706是用于智能系统、微控制器系统和基于DSP系统的理想产品。其串行接口可配置为三线接口。增益值、信号极性以及更新速率的选择可用串行输入口由软件来配置。该器件还包括自校准和系统校准选项,以消除器件本身或系统的增益和偏移误差。
1 AD7705/7706的特点
(1) AD7705:2个全差分输入通道的ADC
(2) AD7706:3个伪差分输入通道的ADC;16位无丢失代码;0.003%非线性
(3) 可编程增益:1~128
(4) 三线串行接口SPITM、QSPITM、MICROWIRETM和DSP兼容
(5) 有对模拟输入缓冲能力
(6) 2.7~3.3V或4.75~5.25V工作电压
(7) 3V电压时,最大功耗为1mW
(8) 等待电流的最大值为8mA
(9) 16脚DIP、SOIC和TSSOP封装
2 AD7705/7706的引脚排列及功能
AD7705/7706的引脚排列如图2,引脚说明见表1。
3 AD7705/7706片内寄存器
AD7705/7706包括6个用户可通过串行口访问的片内寄存器。
第一个是通讯寄存器,它管理通道选择,决定下一个操作是读操作还是写操作,以及下一次读或写哪一个寄存器。所有与器件的通讯必须从写通讯寄存器开始。上电或复位后,器件等待在通讯寄存器上进行一次写操作。
第二个寄存器是设置寄存器,决定校准模式、增益设置、单/双极性输入以及缓冲模式。
第三个寄存器是时钟寄存器,包括滤波器选择位和时钟控制位。
第四个寄存器是数据寄存器,器件输出的数据从这个寄存器读出。
第五个寄存器是零标度校准寄存器,AD7705/7706包含几组独立的零标度寄存器 ,每个零标度寄存器负责一个输入通道。它们都是24位读/写寄存器。
第六个寄存器是满标度校准寄存器,AD7705/7706包含几组独立的满标度寄存器 ,每个满标度寄存器负责一个输入通道。它们都是24位读/写寄存器。
4 AD7705/7706的接口时序
如前所述,AD7705/7706的编程功能用片内寄存器的设置来控制。对这些寄存器的读/写操作通过器件的串行接口来完成。
AD7705/7706的串行接口包含5个信号:CS、SCKL、DIN、DOUT和DRDY。DIN线用来向片内寄存器传送数据,而DOUT线用来访问寄存器里的数据。SCLK是串行时钟输入,所有的数据传输都和SCLK信号有关。DRDY线作为状态信号,以提示数据什么时候已准备好从寄存器读数据。输出寄存器中有新的数据时,DRDY变为低电平。CS是片选信号,用来选择器件。图3和图4是AD7705/7706的接口时序图。图3是从AD7705/7706的输出移位寄存器读数据的时序图。图4则是向输入移位寄存器写入数据的时序图。
5 AD7705/7706在智能仪器仪表中的应用
AD7705提供双通道、低成本、高分辨率模数转换功能。由于采用Σ-△结构实现模数转换,使得该器件在噪音环境下能免受干扰,因此它很适合于工业控制用。同时它还提供了可编程的增益放大器,数字滤波器和校准选项。因此,它提供比普通的积分ADC更多的系统功能,而且没有必要有高质量的积分电容器的缺点。
片上PGA允许AD7705处理低至10mV(满标度)的模拟输入电压(VREF=+1.25V)。器件在非缓冲模式下工作时,差分输入使模拟输入范围的绝对值处于GND和VDD之间的任一值。由此器件允许将传感器直接与AD7705的输入端相连。下面是由本人开发的“Q-101轴瓦厚度测量仪”的具体应用。
本测量仪是采用气动测量原理进行测量。就是以空气作为介质,利用空气流动时的特性来实现机械量的测量。气动量仪按工作原理可分为流量式和压力式两类。“Q-101轴瓦厚度测量仪”采用的是压力式气动量仪,把被测量的变化转换成空气压力的变化量,然后通过测量压力信号来测量轴瓦的厚度。其原理如图5和图6所示。当经过稳压后压力为Pa的空气通过进气喷嘴,经测量喷嘴和挡板之间的间隙逸入大气时,背压Px与间隙S之间的关系如图6所示,这种背压与间隙之间的关系是一一对应的。系统组成框图如图7所示。首先,用压力传感器来测量背压Px,然后,将传感器输出的差分信号送到模数转换器(AD7705芯片)中,进行模数转换,再将得到的数字量送入单片机(采用LG公司生产的GMS97C52单片机)进行数据处理。最后,送入显示窗口(LED)。在设计制作中,应注意以下问题:
由于模拟输入和基准输入是差分的,模拟调制器的大部分电压都是共模电压,AD7705/7706的良好的共模抑制性能能消除这些共模输入信号里的共模噪声,数字滤波器能抑制供电电源产生的除了调制器采样频率整数倍的频率以外的宽带噪声。此外 ,数字滤波器还能消除模拟和基准输入信号里的噪声不使模拟调制器饱和。但是,由于它的分辨率太高,而要求的噪声电平太小,所以,必须注意接地和电路布线。
AD7705/7706的印制板电路必须按规格设计,以确保模拟区和数字区分开并各自限定在电路板上的一定区域。利用接地平面可以很容易地将它们分开。因为这样能使屏蔽性能最好。应在一个地方将模拟和数字接地平面连接在一起,以避免出现接地环路。应避免在元器件下面走数字线,因为这样会造成片内噪声成倍增加。AD7705/7706的电源线应用足够粗的,以便降低线路阻抗,同时减少电源供电的尖峰信号的影响。时钟信号不能在模拟输入信号附近通过,模拟信号和数字信号之间应避免相互交叉。所有的模拟电源都应去耦。用10μF并联一个0.1μF的陶瓷电容接GND去耦。
上一篇:基于FFT的低频谐波失真度测试仪
下一篇:ST450 PI网络晶体中间测试机的电控设计
推荐阅读最新更新时间:2024-05-13 18:16
滤波、去耦、旁路电容的作用
滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。 去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。 旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。 1.关于去耦电容蓄能作用的理解 1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。 而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。 你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水,这时候,水不是直接来自于水库,那样距离太远了,等水过来,我们已经渴的不行了。 实际水是来自于大楼顶上的水塔,水塔其实是一个buffer的作用。 如果微观来看,高频器件在工作的时候,其电流是不连续的
[电源管理]
LTCC二阶电感性耦合带通滤波器的设计
0 引言 现代移动通信系统从GSM到GPRS直至CDMA,频率从原来的几百Hz到了现在的900 MHz,1.8 GHz,2.4 GHz,5.8 GHz,甚至更高。与此同时,对于器件的小型化和高性能的要求却在不断提高。在微波波段,多层陶瓷介质的无源器件,如滤波器等,由于其具有小型化、易集成、设计灵活等优点而越来越受到重视。为了在器件小型化的同时,降低其损耗,以获得更高的品质因数,就需要寻求新的材料和技术。在众多的微波介质板材中,LTCC相对于HTCC(high temperature cofired ceramic)更具优势。它结合了共烧技术和厚膜技术的优点,减少了昂贵、重复的烧结过程,所有电路被叠层热压并一次烧结,节省了时
[模拟电子]
基于EMI滤波器设计中的干扰特性和阻抗特性的研究
随着电子技术的发展,电磁兼容性问题成为电路设计工程师极为关注和棘手的问题。 根据多年的工程经验,大家普遍认为电磁兼容性标准中最重要的也是最难解决的两个项目就是传导发射和辐射发射。为了满足传导发射限制的要求,通常使用电磁 干扰 ( EMI )滤波器来抑制电子产品产生的传导噪声。但是怎么选择一个现有的 滤波器 或者设计一个能满足需要的滤波器?工程师表现得很盲目,只有凭借经验作尝试。首先根据经验使用一个滤波器,如果不能满足要求再重新修改设计或者换另一个新的 滤波器 。因此,要找到一个合适的 EMI 滤波器就成为一个费时且高成本的任务。 电子系统产生的干扰特性 解决问题首先要了解电子系统产生的总干扰情况,需要抑制多少干扰电压才能满足标
[电源管理]
关于叉指结构在单片晶体滤波器中的应用实例分析
引言 滤波器是频率选择系统中的关键元器件,在通信、导航、广播电视、宇航工程的电子设备中,占有重要的地位。随着1963年能陷理论的出现,在1966年日本 东京大学工业科学学院和美国贝尔实验室分别研制出单片式晶体滤波器(MCF)。单片晶体滤波器通过在压电材料的基片上应用真空镀膜的方式,镀上若干有确定 位置和确定尺寸形状的电极,按照滤波的需求有目的的通过设计来确定每个谐振器的几何尺寸,镀回频率以及谐振器之间的距离,来控制机械振动波在基片上的传播,从而达到将电信号滤波的目的。 单片式宽带晶体滤波器简介 石英晶体滤波器具有插入损耗小,稳定度高,品质因数高等特点,但是石英晶体也有机电耦合系数小,串并联谐振频率间隔小的固有局限性,通常用于
[电源管理]
基于ADSP-BF533处理器的去方块滤波器的实现及优化
引言 在已有的基于块的视频编解码系统中,当码率较低时都存在方块效应,新的视频编码标准H.264中亦是如此。产生这种方块效应的主要原因有两个:一是由于对变换后的残差系数进行的基于块的整数变换后,以大的量化步长对变换系数进行量化会使得解码后的重建图像的方块边缘出现不连续;二是在运动补偿中插值运算引起的误差使得编解码器反变换后的重建图像会出现方块效应。如果不进行处理,方块效应还会随着重构帧积累下去,从而严重地影响图像的质量和压缩效率。为了解决这一问题,H.264中的去方块滤波技术采用较为复杂的自适应滤波器来有效地去除这种方块效应。因此,如何在实时视频解码中优化去方块滤波算法,降低计算复杂度,提高重建图像质量,就成了H.264解码的一个
[工业控制]
直流电机伺服驱动开关电源的EMI滤波器设计
引言 直流电机专用伺服驱动电源,已不仅仅是传统意义上的开关电源,它直接参与了直流电机的控制工作,其特有的微机接口控制和上电时序控制功能尤其适合直流电机驱动系统,相对传统的通用型大功率电源有着明显的的技术优势,其多功能的技术特点,符合电机驱动电源系统的发展方向。然而,随着电子设计、计算机与家用电器的大量涌现和广泛普及,电网噪声干扰日益严重并形成一种公害。特别是瞬态噪声干扰,其上升速度快、持续时间短、电压振幅度高(几百伏至几千伏)、随机性强,尤其会对微机和伺服驱动系统易产生严重干扰,常使人防不胜防。 电磁干扰滤波器(EMI Filter)是近年来被推广应用的一种新型组合器件。它能有效地抑制电网噪声,提高伺服系统和电子设备的抗干扰能
[电源管理]
如何优化差分电路PCB设计的若干要点
当提到通信系统时,比起单端电路,差分电路总是能提供更加 优良的性能。它们具有更高的线性度、抗共模干扰信号性能等。但是,对于差分电路还是有很多谜团。某些RF工程师认为很难设计、测试和调试它们。对于差分滤波器尤其如此。是时候揭开差分滤波器设计的神秘面纱了。 要做到这一点,我们要从通信系统接收链中的IF级滤波器开 始。我们将介绍基本滤波器的一些重要规格概念、几类常用滤 波器的响应、切比雪夫1型滤波器应用,以及如何从单端滤波器 设计开始,然后将其转化为差分滤波器设计。我们还将考察一 个差分滤波器设计示例,并讨论有关如何优化差分电路PCB设计的若干要点。 RF信号链应用中差分电路的优点 用户利用差分电路可以达到比利用单端电路更高
[模拟电子]
一种改进型的FIR数字滤波器设计
在数字信号处理中,滤波占有极其重要的作用,数字滤波器是谱分析、雷达信号处理、通信信号处理应用中的基本处理算法。目前常用的滤波器设计方法普遍采用Matlab仿真,DSP实现。但这一传统设计方法需要的开发周期较长,且设计过程反复进行,非常不便。 针对这一问题,出现了系统级设计方法的构想将Matlab算法仿真和DSP的实现融合在一起。文中应用Matlab Link For CCS Development Tools进行系统级设计,来完成FIR滤波器的设计。 1 FIR数字滤波器设计的基本步骤 数字滤波器根据其冲激响应函数的时域特性,可分为2种,即无限长冲激响应(IIR)滤波器和有限长冲激响应(FIR)滤波器。
[嵌入式]