简易带过流保护直流电机电源设计

发布者:masphia最新更新时间:2006-05-30 来源: 电源技术应用关键字:稳压器  电压  电流 手机看文章 扫描二维码
随时随地手机看文章

0 引言
  目前,各种直流电源产品充斥着市场,电源技术已经比较成熟。然而,基于成本的考虑,对于电源性能要求不是很高的场合,可采用带有过流保护的集成稳压电路,同样能满足产品的要求。过流保护电路作为电源电路中不可缺少的一个组成部分,根据其控制方法大致可以分为关断方式和限流方式,而直流电机电源较宜采用关断方式。
  过流保护电路首先要有一个电流取样环节,常用做法是串联一个小电阻或者是霍尔元件来获得电流信号。由于霍尔元件体积比较大,价格昂贵,因而考虑采用串联一个小电阻的方法。

1 工作原理
  带过流保护功能的LM317稳压电路如图1所示,集成稳压电路一般分为5部分,即交流降压电路、整流电路、滤波电路、稳压电路、保护电路。交流220V电压经电源变压器降压整流得到直流电压Vin,此电压通过滤波电路输入到集成稳压器输入端,在集成稳压器输出端可得到1.25~37V直流电压。工作原理图及各部分电压波形如图2所示。


  下面分析保护电路的工作过程。
1.1 集成稳压器的保护
  为获得较高的输出电压值,LM317稳压器的调节端与地之间的电阻R2值及其压降往往较大,在R2两端并接一个小于10μF的电容C3,可有效地抑制输出端的纹波。当输入端或输出端发生短路时,电容C3的放电将在R1上产生冲击电压,会危及稳压器的基准电压电路,因此需在R1两端并二极管D3以保护稳压器。
  稳压器的输出端不加电容亦能工作,由于稳压器在1∶1的深度负反馈下工作,当输出端负载为容性的某一值时,稳压器有可能出现自激现象。因此,在稳压器的输入端接入0.1μF的电容C1,输出端接入1000μF的电解电容C5,提供足够的电流供给,同时可以防止可能发生的自激振荡以及减小高频噪声和改善负载的瞬态响应。当输入端发生短路时,C5通过稳压器的调整管放电,C5值较大,则放电时的冲击电流很大,电压会通过稳压器内部的输出晶体管放电,可能造成输出晶体管发射结反向击穿。为此,在稳压器两端并接二极管D2,输入端短路时C5通过D2放电,保护稳压器。
1.2过流保护
  过流保护电路原理见图3,R5为取样小电阻。当电源工作时,稳压器输出端输出正向直流电压,电机开始启动。由于直流电机启动瞬时电流iout较大(约为额定电流的8~10倍),iout流过小电阻R5,并经R4对C4充电。通过设定R4、C4的值,使充电时间Υ大于电机启动时间δ,V2(9013)处于截止状态,电机启动到稳定状态后,电流恢复到工作电流。一旦电机发生短路或堵转,使电容C4两端电压达到V2的导通电压,则V2导通,强制稳压器的输出电压降为基准电压1.25V。

2 电路设计
2.1 集成稳压器的选择

  在选择集成稳压器时,应该兼顾性能、使用和价格几个方面。性能指标主要根据负载电压电流的大小、调整率的高低以及工作稳定范围的宽窄来选。LM317系列由于其输出电压可调,同时其有较高的稳压精度、较高的纹波抑制比和较好的输出电压温度特性,而得到了广泛的应用。
  设电源的输出总功率P0,负载额定电压U0,则输出电流额定值为I0=P0/U0,为了使电路稳定运行,还需要考虑一定的设计余量(一般取10%以上)。LM317系列稳压器主要参数如表1所列,根据计算出的电流值,选择相应的稳压器。


2.2整流滤波电路设计
  桥式整流滤波电路要确定整流二极管以及滤波电容值。
2.2.1整流二极管的选择
  选择二极管要依据二极管的反向耐压VRM和正向电流IF。由于滤波电容的容量愈大,二极管导通角愈小,通过二极管脉冲电流的幅度愈大,因此,整流管的幅值电流必须加以考虑。流过整流管的平均电流ID=Ii/2,Ii=IR2+I0,IR2=IR1+Iadj≈0.01A(式中Ii为稳压器的输入电流,IR1、IR2、Iadj分别为流过R1、R2,以及调整端的电流),则ID=(0.01+I0)/2。考虑到电容充电电流的冲击,正向电流一般取平均电流的2~3倍。

二极管最大反向电压,式中U2为电源变压器次级电压有效值,Ui为整流输出电压(即稳压器输入电压)。为了保证稳压器LM317稳定运行,输入电压Ui与输出电压U0之差一般在5~15V范围,取Ui-U0=1OV,得Udmax=1.2Ui=1.2(U0+10)=12+1.2U0。设计时可考虑一定的余量。
2.2.2滤波电容设计
  滤波电解电容C1的选择原则是:取其放电时间常数RLC1大于充电周期的3~5倍,其耐压值Uc必须大于脉动电压峰值。对于桥式整流电路来说,脉动电压峰值为2U2,C1的充电周期等于交流电源周期T的一半,即式中RL为整流后的等效负载电阻,而RL=Ui/Ii=(10+U0)/(0.0l+I0),代入式中即可确定C1值
2.3 电源变压器设计
  在串联稳压电路中,确定变压器的二次电压很重要。如果为了有富余而把二次电压做得较高,就会增加调整管的损耗,这样得相应地增大散热器。因此,要设计出性能优良的电源,变压器的参数值往往要经过多次调整。参考史献中全面地讲解了电源变压嚣设计的各个要点,本文不再赘述。这里采用近似计算的方法来确定U2和I2。
  U2=Ui/1.2=0.83(10+Uo)

  I2=(1.5~2)Ii=(1.5~2)×(0.01+Io)

2.4 集成稳压器电路设计
  为保证稳压器在空载时也能正常工作.则流过电阻R1的电流不能太小。一般取IR1=5~10mA,故R1=VREF/IR1=1.25/(5~10)×10-3≈120~240Ω,式中VREF为稳压器基准电压。而输出电压U0与VREF、R1、R2有以下关系:
  Un=VREF+(IR1+Iadj)R2=(1+R2/R1)VREF+IadjR2? (1)
  调节电阻R2,即可改变输出电压的大小。由于Iadj很小(只有50μA),所以式(1)可写为Uo=(1+R2/R1)VREF=1.25(1+R2/R1)?? (2)
  由式(2)求得R2=(0.8U0-1)R1。
2.5保护电路设计
  电路中保护二极管的选择比较简单,只要能保证满足反向耐压和冲击电流这两个要求就可以了。而R3的作用主要是限制三极管的基级电流,一般取1~2kΩ。下面谈谈过流保护电路的设计。
2.5.1 启动状态
  
电机启动时必须满足充电时间Υ大于启动时间δ,V2不导通,电机才能正常启动。由于启动电流很大,一般是额定电流的4~7倍,可看成不变,设为I=5I0。根据图4可知。


2.5.2保护状态
  设电机负荷在额定状态下运行,电机电流I0已经稳定。电机短路或堵转后,电流突然增大到短路电流Is,电容C4开始充电。考虑一定的设计余量,取保护电流设定值IG

 
2.6 散热设计
  稳压器的最大允许功耗取决于芯片的最高结温TjM,当T??

  

  求得Rθd后,通过查散热片等效热阻与材料厚度和表面积关系的有关手册.可得到表面积的范围。表2列出了几种常用封装形式的热阻。

3 实验结果
  定电流I0=0.625A,电机启动时间δ=50ms,允许短路时间ts=500ms,保护电流整定值Ic=2A,最高环境温度TAM=+45℃的条件下。设计出各电路参数见表3。

  按表3的设计选取参数组装完毕后,经实验测定达到如下技术指标:
  输出特性Un=24V,In=0~1A:
  电压稳定度 Sv≤5×10-6;
  负载稳定度S1≤5×1O-5;
  温度系数α≤1×10-5/℃。
  电机能正常启动,当电机堵转时,过流保护正常起作用。

4 结语
  综上所述,采用LM317集成稳压器设计的小功率直流电机电源,电路结构简单,效率高,成本低,输出电压性能好,有着很好的应用前景。

关键字:稳压器  电压  电流 引用地址:简易带过流保护直流电机电源设计

上一篇:蓄电池充放电装置中双向AC/DC变流器的研究
下一篇:利用智能MOSFET驱动器提升数字控制电源性能

推荐阅读最新更新时间:2024-05-13 18:12

开关电源转换器大功率或大电流转换器电路
  20世纪90年代,人们认为400V输入,100A、48V输出的AC/DC转换器的最佳电路为全桥式或双管正激式。加拿大北方电信曾做出200A、48V输出 的全桥式AC/DC转换器。近些年,人们还在研究大功率或大电流转换器的最佳电路,如双向(低压大电流)DC/DC转换器电路和三电平DC/DC转换器 电路等。实际上,DC/DC转换器中并没有多电平之说,这里所谓的“三电平”(Three Leve1,TL)是借用了多电平逆变器的一个名词。以三电平 半桥DC/DC转换器为例,桥臂由两个功率开关管串联,中点接有钳位二极管,类似于三相二电平全桥逆变器一个桥臂的结构。由于是双管串联, 三电平DC/DC转换器的输入端电压可以达到800~1000V,
[电源管理]
Intersil 推出业内首款USB-C降压-升压稳压器
瑞萨电子株式会社(TSE: 6723)子公司Intersil今天宣布,推出业内首款针对使用可反转USB Type-C™连接器的平板电脑、超极本、移动电源和其他移动设备的降压-升压稳压器---ISL95338。这款新的双向稳压器可接受宽范围的DC电源输入,包括AC/DC电源适配器、USB PD3.0端口、旅行电源适配器、移动电源等,并将电源转换成最高可达24V的稳定电压。ISL95338还可将宽范围的DC电源在适配器输入转换成20V稳定电压。ISL95338支持USB-C生态系统,提供降压模式、升压模式、降压-升压模式,并能够灵活地使用于任何USB-C电源管理应用。 单芯片ISL95338可替换目前用于双向降压和升压模式的2个
[电源管理]
Intersil 推出业内首款USB-C降压-升压<font color='red'>稳压器</font>
基于数字电源控制器UCD3138的一种新的输入电流检测方法
1 引言 1.1 数字电源控制器UCD3138 的应用 数字电源控制器UCD3138 因其自身所具备的良好的前馈功能,通信功能和可编程性等特点,在DC/DC电源中通常置于副边侧。常见的拓扑方案包括全桥,半桥和LLC 等。图1 所示的是应用数字电源(控制器)UCD3138 的硬开关全桥系统框图。UCD3138 位于副边侧,通过数字隔离器ISO7420CF完成驱动信号向原边侧的传递。 Figure 1. 硬开关全桥系统框图 1.2 隔离电源拓扑中的电流互感器 图2 所示的是应用于全桥等拓扑中的电流互感器。其原边侧串入主功率回路,副边侧将按比例(比例系数为互感器的匝比T)衰减后的电流信息通过与采样电阻相乘得电压信息。位于副边
[测试测量]
基于数字电源控制器UCD3138的一种新的输入<font color='red'>电流</font>检测方法
电源时序管理和电源电压监控管理芯片
作者Email: cherh@dragonhk.com 摘要:本文介绍了一种新的用于电源控制的可编程芯片。可在单个芯片上实现多的电源时序控制和监控功能,并且所有的控制结果可以立即的仿真出来,要更改设计时,只要对器件的E2CMOS(r) 配置内存重新编程就可以了。 关键词:电源控制;场效应功率管;可编程逻辑器件;内部振荡器 前言 目前控制电源时序和监测方案大都是:电阻或电容等分离器件搭起来实现控制的,如A,B两种电压,要求A先上电,然后B上电。则使用A处理好的电压作为B的电荷泵的激励源,这样的两路还较容易实现控制,但精确性已经不足;两路以上的话PCB画起来就不十分简洁了,若再精确的延时控制就需要加上电容实现;更加精确的
[电源管理]
光电式电流互感器的发展与应用
为了提高电力网电力 系统的自动化程度,减小电力网变电 站的占地面积和建筑空间,满足“数字化、光纤化、智能化、一体化”的要求,新型的光电式电流互感器将取代传统的电磁式电流互感器。该文阐述了光电式电流互感器的分类、特点和应用情况。 关键词:光电式电流互感器;磁光效应 随着电力网电力 系统的发展,电力网发电 和输电力网变电 容量的不断增加,为了提高电力系统的自动化程度,减小变电站的占地面积和建筑空间,现在设计的电流互感器必须满足“数字化、光纤化、智能化、一体化”的要求。数字化是指要尽量淘汰传统的模拟信号的指针式读数盘,而采用数字式的仪表,减小测量中因读数而引起的人为误差。光纤化是指在测量系统中,大力提倡光纤的使用,减小电磁场对测量结果的
[电源管理]
光电式<font color='red'>电流</font>互感器的发展与应用
凌力尔特µModule稳压器具60V输入电压范围
亚德诺半导体(ADI)旗下的凌力尔特(Linear)日前推出µModule(电源模块)降压稳压器LTM8073,该组件具备高达60V的输入电压范围(65V绝对最大值)。在诸如通讯基础设施、工厂自动化、工业机器人和航空电子系统等噪声环境中,该组件可安全地采用未稳压或波动的24V至48V输入电源运作。 SilentSwitcher架构最大限度降低了EMC/EMI辐射,使LTM8073能够满足CISPR22ClassB要求,以用于包括成像和RF系统在内的讯号处理应用。 采用电阻可将输出电压调节于0.8V至15V。 此宽广输出电压范围提供使用一个产品产生3.3V、5V、12V和15V通用系统总线电压的通用性。 在24VIN至5VOUT/3
[半导体设计/制造]
电流低于200 μA的低功耗4 mA至20 mA过程控制电流环路
      电路功能与优势   图1所示电路是一个4 mA至20 mA电流环路发送器,用于过程控制系统与其执行器之间的通信。除具有高性价比外,此电路还是业界功耗最低的解决方案。4 mA至20 mA电流环路广泛用于采用数字或模拟输入输出的可编程逻辑控制器(PLC)和分布式控制系统(DCS)。电流环路接口之所以颇受青睐,是因为它能以高性价比方式进行长距离抗扰数据传输。低功耗双通道运算放大器AD8657 、DACAD5621和基准电压源ADR125 的组合,可以为微控制器和数字隔离器等更高功耗器件提供更多功耗预算。此电路输出电流为0 mA至20 mA。4 mA至20 mA范围一般对应表示DAC或微控制器的输入控制范围,0 mA至4
[电源管理]
耗<font color='red'>电流</font>低于200 μA的低功耗4 mA至20 mA过程控制<font color='red'>电流</font>环路
锂电池寿命可延长 1 倍,科学家研发基于脉冲电流的充电协议
4 月 17 日消息,来自亥姆霍兹中心和柏林洪堡大学的科研团队近日发表论文,发现了可以将锂离子电池的寿命延长一倍的方法。 研究结果表明,通过改变充电器向电解质材料输送电流的方式,电池在经过数百次放电-充电循环后仍能保持较高的能量容量。 锂离子电池是一种结构紧凑、坚固耐用的能源容器,目前已经广泛商用,随着电解质穿过分隔阳极和阴极的薄膜,它们的容量(也就是我们常说的健康度)会逐渐降低。 目前最好的商业级锂离子电池使用的电极由一种名为 NMC532 的化合物和石墨制成,使用寿命长达 8 年。 传统的充电方式是使用恒定电流(CC)的外部电能,这种充电方式下阳极的固体电解质界面(SEI)会“明显变厚”,NMC532 和石墨电极结构中发现
[电源管理]
锂电池寿命可延长 1 倍,科学家研发基于脉冲<font color='red'>电流</font>的充电协议
小广播
最新应用文章

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved