蓄电池充放电装置中双向AC/DC变流器的研究

发布者:素心悠远最新更新时间:2006-05-30 来源: 电源技术应用关键字:电流  电压  正弦  因数 手机看文章 扫描二维码
随时随地手机看文章

0 引言
  随着电力电子技术的发展,蓄电池在工业领域得到了广泛的应用,如邮电、通讯、电力系统、UPS系统、逆变及特种电源系统等,因此,蓄电池的维护显得越来越重要。对蓄电池运行状态进行监控并定期进行均衡充放电维护是延长蓄电池使用寿命,保证蓄电池正常工作的必不可少的手段之一。
  目前,常规的蓄电池维护大都采用充电器和放电器,充电器一般采用晶闸管控制。因而具有谐波严重、功率因数低等缺点。而蓄电池放电时主要利用电阻放电,消耗了大量的电能。虽然也有少数采用晶闸管有源逆变向电网馈能,但仍不可避免地因为谐波和低功率因数而污染电网。随着电力电子技术和计算机技术的发展,采用SPWM双向整流逆变技术可以实现蓄电池的充放电控制。它实现了网侧电流正弦化及单位功率因素,大大降低了装置对电网的谐波污染;采用逆变放电将蓄电池电能回馈至电网,大大节省了电能;并且具有恒压、恒流或按照蓄电池充放电曲线进行控制,方便蓄电池的管理,有助于延长蓄电池使用寿命。

1 系统的主电路结构
  系统主电路结构如图1所示。主电路采用单相PWM的AC/DC的电压型的拓扑结构,L2是交流侧电感,实现PWM电流控制,合理地选择电感L2对系统至关重要,L2选择过小会使输出电流的波纹较大,产生大的电磁噪声和干扰;L2选择过大会增加电压降,使电流跟踪能力差,需要相应增加母线电压。L1,C1及C2组成滤波器,使蓄电池获得平滑的电流、电压波形;变压器可以使直流侧电压和电网电压适配,井将蓄电池组和电网隔离。

2系统的控制
2.1 系统控制框图

  系统的控制目标是使系统能双向运行,并且蓄电池的充、放电过程能按照规定的曲线进行。系统在充电时处于整流模式,电网侧电流为正弦波且功率因数为1,电能从电网流向蓄电池;系统在放电时处于有源逆变模式,电网侧电流为正弦波且功率因数为“-1”,此时电能从蓄电池流向电网。两种工作模式下电压、电流矢量图如图2所示。

  图2(a)显示电网侧的电流和电压同相位;图2(b)显示电网侧电流和电压相位相反。图中的Un是逆变器的输出电压矢量。
  根据系统的拄制要求,需要按照充放电曲线实时地控制蓄电池的电流和电压,这样系统需要控制的量有3个:蓄电池电流,蓄电池电压、电网侧电流。系统的控制框图如图3所示。


  图中:Ubat*是蓄电池充放电的电压指令值,Ubat是蓄电池电压反馈值;Ibat*是蓄电池充放电的电流指令值,Ibat是实际的蓄电池充放电电流;I*是交流侧电流的指令值,I是实际的交流电流;G1(s)是蓄电池电压调节器,通常为PI环节,调节器的输出经过限幅后作为电网侧电流指令的幅值Im;G2(s)是蓄电池电流的调节器,它控制实际的蓄电池工作电流,调节器的输出经过限幅后也作为电网侧电流指令的幅值Im;电压环和电流环之间的切换根据蓄电池充放电曲线进行;调节器输出的正负决定了系统工作在充电还是放电状态;Im和电网电压同频同相的单位正弦信号一起构成了交流侧电流的指令值I*;G3(s)是电流调节环.
K是功率放大环节,G4(s)是交流滤波环节,Uc是电网电压。
2.2系统控制的实现
  为了实现对蓄电池充放电曲线的控制,在系统工作过程中,可以根据要求的曲线实时地改变电压指令值,这样就可以使蓄电池满足电压曲线。系统在工作过程中时,调节器G1(s)一般处于饱和状态,可以根据曲线实时地改变它的限幅值,这样就能控制电网侧电流的大小,从而控制蓄电池充放电的电流,满足曲线需要。在蓄电池充放电的后期,调节器会自动地退出饱和状态,蓄电池工作在小电流的充放电状态。
  SPWM电流跟踪控制采用简单的比例控制,它具有控制简单并且稳定性好等特点,由于它具有固定的开关频率,因此它有利于滤波环节的设计,也有利于限制系统的开关损耗。
  系统的控制过程如图1和图3所示,电网侧电流给定和实际电流的偏差经过G3(s)调节后和三角载波比较,输出按照正弦规律变化的脉冲序列,该脉冲经过驱动电路后形成互补的且具有死区时间的脉冲对,分别驱动一个桥臂的上下两个功率器件,另一个桥臂的驱动脉冲滞后180°,这样就能保证交流侧的电流为正弦波。

3 实验结果
  依据上述研究,设计了一台5kW的蓄电池充、放电样机,其主要参数如下:

  P=5kW,变压器为220V/130V(Ue=130V Ubat=220V),L2=3mH.C1=C2=3300μF,L1=5mH,f=10kHz。
  图4为蓄电池在充、放电时的电网侧电流波形,其中①为电网电压波形,有效值220V;②为电网侧电流波形,有效值为22.4A。图4(a)显示电流和电压同相,即功率因数为1,电流为正弦电流,电流由电网流入蓄电池;图4(b)显示电流和电压反相,即功率因数为“-1”,电流为正弦波,电能由蓄电池流向电网,即实现了并网发电。

4 结语
  采用双向AC/DC变流器设计的充放电装置在满足能充电放电的同时,实现了电网侧电流的正弦化和单位功率因数,大大减少了装置运行时时电网的污染,并网发电实现了节能。系统能按照设定的蓄电池充放电曲线工作,管理方便,有效地延长了蓄电池的使用寿命。

关键字:电流  电压  正弦  因数 引用地址:蓄电池充放电装置中双向AC/DC变流器的研究

上一篇:局用通信设备中开关电源动态性能的改善方法
下一篇:简易带过流保护直流电机电源设计

推荐阅读最新更新时间:2024-05-13 18:12

技术文章—实验:PN结电容与电压的关系
目标 本实验活动的目的是测量反向偏置PN结的容值与电压的关系。 背景知识 PN结电容 增加PN结上的反向偏置电压VJ会导致连接处电荷的重新分配,形成耗尽区或耗尽层(图1中的W)。这个耗尽层充当电容的两个导电板之间的绝缘体。这个W层的厚度与施加的电场和掺杂浓度呈函数关系。PN结电容分为势垒电容和扩散电容两部分。在反向偏置条件下,不会发生自由载流子注入;因此,扩散电容等于零。对于反向和小于二极管开启电压(硅芯片为0.6 V)的正偏置电压,势垒电容是主要的电容来源。在实际应用中,根据结面积和掺杂浓度的不同,势垒电容可以小至零点几pF,也可以达到几百pF。结电容与施加的偏置电压之间的依赖关系被称为结的电容-电压(CV)特
[半导体设计/制造]
技术文章—实验:PN结电容与<font color='red'>电压</font>的关系
全新软启动模块:一种尺寸适合多种电流级别的应用
2018年3月9日,德国慕尼黑讯 – Infineon Technologies Bipolar GmbH & Co. KG发布面向低压软启动应用的英飞凌® Power Start。全新系列模块满足市场对于经济紧凑型半导体解决方案的需求。采用新型设计的Power Start的重点是降低复杂度和减少组件数量。因此客户可缩短软启动器开发周期,并简化其生产流程。低压软启动应用一般包括传送带、大型风扇和磨机。这些产品多见于用于淡水和污水运送和石油开采的泵机。 采用全新设计概念的Power Smart模块的尺寸统一为55毫米,适合多种电流级别的应用。相比较而言,现有其他软启动解决方案需要几个不同尺寸的外壳。这一全新特性为将该模块以及旁
[半导体设计/制造]
全新软启动模块:一种尺寸适合多种<font color='red'>电流</font>级别的应用
从12V升级到48V,电气系统自动启停系统提升的不只是电压
油耗政策越来越严苛,到2020年,乘用车新车平均油耗要控制在5升/百公里以内。对于车企而言,节能减排,压力很大。开发电动车是一种思路,因为电动车自带的“零排放”光环可以稀释掉不少燃油车的“超标油耗”。如果要在燃油车框架下“做文章”,混动是一剂救命良方,48V微混系统风头正盛。 谓48V系统,本质上是一种低混合动力系统,通俗来讲,就是自动启停系统的升级版。说到这里,不得不提一下自动启停系统。业界有一个“12V微混系统”的说法,所指的正是我们常说的自动启停。 自动启停减少的是发动机在怠速区产生的超标油耗,厂家很乐意,通过这一小规模的改动就可以降低不少平均油耗,帮助新车检测“过线”。在实际使用中,却被很多车主束之高阁,主动关闭,沦
[汽车电子]
美国研发薄如纸的氧化镓晶体管 可处理8000V以上的电压
如果体积庞大的电池以及相关的电力系统不再占据宝贵的货运空间的话,人们都会喜欢 电动汽车 的。不过,现在,据外媒报道,美国纽约州立大学布法罗分校(the University at Buffalo)正在研发一款基于氧化镓的晶体管,可能对此能够提供一些帮助。 (图片来源:布法罗分校) 在最新的一项研究中,布法罗分校的电气工程师描述了一种微型电子开关,能够处理8000V以上的电压,而且只有一张纸那么薄。该晶体管有助于制造出更小、更高效的电子系统,用在 电动汽车 、机车和飞机上,用于控制和转换电子,即用于电力电子研究领域。此外,制成的电子系统将有助于延长此类交通工具的续航里程。 该研究的第一作者Uttam Singisett
[汽车电子]
美国研发薄如纸的氧化镓晶体管 可处理8000V以上的<font color='red'>电压</font>
最好校正一下“功率因数”!
智能电表 的部署正在全球范围内如火如荼地开展。通常,像你我这样的消费者只支付为空调以及支持互联网功能的大屏幕高清电视等所有家用电器供电所用的电量(kWh:千瓦时)。但事实上,对于所有不支持 功率因数校正 (PFC)  的设备来说,从插座消耗的电能要高得多,得用千伏安时 (kVAh) 来表示。而这之间的成本差异则由公用事业公司慷慨承担了。 智能电表即可测量我们消耗的 kWh,也可测量公用事业公司最初产生及输送的 kVAh。值得注意的是这些智能设备能够显示我们不好的消费习惯。我们最好尽快校正功率因数,以免电力公司醒悟过来决定向我们索取他们应得的那份利益。 免受公用事业公司“复仇”之苦的一个办法是使用TI 全新 功率因数校正控制器
[电源管理]
最好校正一下“功率<font color='red'>因数</font>”!
Vishay VY1 Compact系列瓷片式电容器通过偏压85/85加速寿命测试
宾夕法尼亚、MALVERN — 2017 年 2 月13 日 — 日前,Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,其VY1 Compact系列交流线路瓷片式安规电容器通过了“偏压85/85”加速寿命测试。Vishay BCcomponents器件可为Class X1 (760VAC) 和 Y1 (500VAC) 应用提供非常高的可靠性,是业内首颗脉冲强度达到10kV,在额定电压下经受了1000小时的 85℃ 温度和 85% 相对湿度测试的器件。 标准的 X1- 和Y1- 额定的陶瓷安规电容器在 IEC 60384-14.4 规定的40℃ 温度和93% 相对湿度条件下进行测试,该
[电源管理]
Vishay  VY1 Compact系列瓷片式电容器通过偏压85/85加速寿命测试
CCM和DCM反激式转换器的电流波形
由反激式转换器的基本工作原理可知:在主开关管开通ton期间,变压器储能;在主开关管关断toff期间,变压器释放磁能并输出给负载。当一个开关周期Ts结束时,变压器的储能若没有完全释放到零,则可以认为反激式转换器工作于CCM模式。其特点是,在一个开关周期内变压器初级绕组和次级绕组交替有电流流过。反之,开关周期结束时,变压器储能完全释放,则反激转换器工作于DCM模式。其特点是,在toff期间,有一段时间转换器的输入、输出电流均为零。                      CCM反激式转换器工作于CCM和DCM时,开关电流ir和负载电流ir的波形分别如图(a)和(b)所示。若iv的峰值为Ip,则的峰值为I'p,     
[电源管理]
CCM和DCM反激式转换器的<font color='red'>电流</font>波形
ROHM开发出精度达±1%的电流检测放大器IC“BD14210G-LA”
与以往结构相比,安装面积减少约46%! ROHM开发出精度达±1%的电流检测放大器IC“BD14210G-LA ” 输入电压范围为-0.2V~+26V,非常适用于12V和24V电源应用的电流检测用途 全球知名半导体制造商ROHM(总部位于日本京都市)面向无线基站、PLC*1 和逆变器等工业设备领域以及白色家电等消费电子领域,开发出更节省空间的高精度电流检测放大器IC“BD1421x-LA系列”。 近年来,越来越多的应用产品需要具备电流检测功能。例如,要想改善电机效率和实现异常检测等目标,就需要提高电流检测精度。另外,还需要减少安装面积。在以往结构(运算放大器+分立器件)中,存在元器件精度波动和温度特性导致电流检
[模拟电子]
ROHM开发出精度达±1%的<font color='red'>电流</font>检测放大器IC“BD14210G-LA”
小广播
最新应用文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved