LLC型串并联谐振变换器参数分析与运用

最新更新时间:2009-01-03来源: 电源技术应用关键字:LLC  变换器 手机看文章 扫描二维码
随时随地手机看文章

  0 引言

  随着现代电力电子技术的发展,开关电源向着高频化、集成化、模块化方向发展。提高开关频率能减小体积,提高功率密度及可靠性,平滑变化的波形和较小的电压/电流变化率也有利于改善系统的电磁兼容性,降低开关噪声。功率谐振变换器以谐振电路为基本的变换单元,利用谐振时电流或电压周期性的过零,从而使开关器件在零电压或零电流条件下开通或关断,以实现软开关,达到降低开关损耗的目的,进一步提高频率,因此得到了重视和研究。

  l 谐振电路

  谐振网络通常由多个无源电感或电容组成,由于元件个数和连接方式上的差异,常见实用的谐振变换器拓扑结构大致分为两类:一类是负载谐振型,另一类是开关谐振型。负载谐振型变换器是一种较早提出的结构,注重电源电压转换比特性的改善,按照谐振元件的谐振方式可分为串联谐振变换器、并联谐振变换器以及两者结合产生的串并联谐振变换器。

  1.1 串联谐振

  由于是串联分压方式,其直流增益总是小于1,类似BUCK变换器;轻载时为稳住输出电压,必须提高开关频率,在轻载或空载的情况下,输出电压不可调,输入电压升高使系统的工作频率将越来越高于谐振频率,而谐振频率增加,谐振腔的阻抗也随之增加,这就是说越来越多的能量在谐振腔内循环而不传递到副边输出;但在负载串联谐振中,流过功率器件的电流随着负载变轻而减小,使通态损耗减小。

  1.2 并联谐振

  输出端可以开路但不能短路,会损坏谐振电容,并且过大的原边回路电流对开关器件及电源都会产生冲击;轻载时,不需通过大幅改变频率来稳住输出电压,与串联谐振相比变换器工作范围更大,可工作至空载;当轻载时输入电流变化不大,开关管的通态损耗相对固定,在轻载时的效率比较低,较为适合工作于额定功率处负载相对恒定的场合。[page]

  1.3 串并联谐振

  输出电压可高于或低于电源电压,且负载变化范围宽,是目前研究领域中较主流的结构。

  2 谐振参数分析

  2.1 电路拓扑

  图1为LLC型串并联半桥谐振变换器电路,主开关管S1和S2是固定0.5占空比互补导通,Lr、Cr与变压器的并联电感Lm构成LLC谐振网络,整流二极管直接连接到输出电容上。

LLC型串并联谐振变换器参数分析与运用

  LLC有两个谐振谐振频率,分别为Lm与Lr、Cr产生的串并联谐振频率LLC型串并联谐振变换器参数分析与运用以及Lr和Cr产生的串联谐振频率。

  2.2 参数影响

  LLC谐振变换器是在串联/并联谐振变换器的基础上改进而来,由于较前两者多了一个谐振元件其设计运用也变得复杂。根据交流分析法得到LLC谐振变换器的输入输出特性为

LLC型串并联谐振变换器参数分析与运用[page]

  2.2.1 k的影响

  对于一个输入输出和功率一定的变换器而言,匝比n固定,如图2(a)所示,在某一Q下,不同的k值所带来的影响:随着k值的增大,最大增益在减小,在输入电压较低时也许达不到所要求的输出电压,且随着k值的增大,为保证所需的输出电压使得变换器的工作频率范围变宽,这不利于磁性元件的工作;但k越小则 Lm越小,Lm两端电压值一定,由于感值的减小其电流峰值增大,而原边开关管关断时流过的即为激磁电感的峰值电流,存在较大的关断损耗,但若此关断电流过小则会影响到零电压开通,故k值的选择应择中考虑开关频率的范围、零电压开通及较小的关断电流。

LLC型串并联谐振变换器参数分析与运用

  2.2.2 Q的影响

  在确定了n和k值的情况下,Q值的大小直接关系到直流增益是否足够大。对于特定的输入电压范围Q值越小,所对应的开关频率范围越小(对于 f0

  3 电路分析

  当开关频率f

  在f0

  3.1 不同负载下的仿真与分析

  3.1.1 满载

  满载情况下的模态分析及仿真波形分别如图3及图4所示。

LLC型串并联谐振变换器参数分析与运用

LLC型串并联谐振变换器参数分析与运用[page]

  Model(t0~t1):t0时刻S2关断,谐振电流对C2、C1(分别为S2、S1的寄生电容)充放电,S1端电压开始下降,当降为零时S1的体二极管导通,为S1的ZVS创造条件。变压器原边电压为上正下负,D1和D4导通,Lm两端电压被箝位为nVo,iLm线性上升,谐振只发生在Lr和Cr之间,Lm未参与谐振。

  Mode2(t1~t2):t1时刻ZVS开通,谐振电流以正弦形式流经S1。流过D1的电流为ir与iLm之差折合到副边的值,由于T>Tr,ir经过半个周期谐振之后S1仍开通,当ir下降到iLm时流过D1和D4电流为零,实现了整流二极管的ZCS关断。

  Mode3(t2一t3):D1和D4 ZCS关断后变压器原副边完全脱开,谐振网络不再向副边传输能量,Lm便不再被箝位于nVO,Lm与Lr、Cr一起谐振,由于Lm较Lr大得多,此时的谐振周期明显变长,近似认为ir保持不变。t3时刻S1关断。

  下半个周期的分析与上述过程对称,这里就不再详述了。

  从模态分析可见整个工作过程中包括了两个谐振过程,一个是Lr和Cr的谐振,另一个则是Lm与Lr、Cr一起谐振。

  3.1.2 轻载

  当负载变轻时,谐振电容上的电压变低,如果其两端电压降到满足条件

LLC型串并联谐振变换器参数分析与运用

  副边整流二极管将不会导通。从ir和iLm的波形可以看出,向副边传输的能量相对较小,原边有较大环流存在,这使得变换器在轻载时损耗较大,然而也正因为较大的环流保证了开关管在较轻载时也能实现零电压开关,如图5所示。

LLC型串并联谐振变换器参数分析与运用[page]

  3.1.3 过载

  负载过重时谐振电容两端电压纹波较大,当满足条件

LLC型串并联谐振变换器参数分析与运用

  时,其工作过程较满载情况下有所不同,在谐振电流ir下降到等于iLm后由于有太多的能量存储在谐振电容上,较高的VCr会使整流二极管导通,进入另一个谐振过程。从图6(a)的ir和iLm波形可见这个谐振过程开关管的关断电流(即为ir的一部分)很小,小于iLm,会使另一MOS管的开通失去零电压开通的条件,如图6(b)所示,谐振回路呈容性。

LLC型串并联谐振变换器参数分析与运用

  从上面的仿真分析可知,当频率一定时负载越重桥臂中点间阻抗越易呈容性,负载越轻则易呈感性,更有利于开关管的零电压开关。

  3.2 与f>fr时的比较

  在开关频率f0

  而f>fr时的不同就在于由于f>fr在S2开通期间Lr和Cr谐振,谐振电流ir大于激磁电流iLm,S1关断ir对C1、C2充放电 ir下降,当S2ZVS开通后ir迅速下降,下降到ir=iLm没有能量传送到副边,此时副边整流二极管完成换流,开始了另半个周期对称的工作过程,可见 Lm一直未参与谐振,更像是普通谐振,同时整流二极管上电流连续,换流时会由于反向恢复带来损耗。

  4 实验结果与波形

  在上述理论分析的基础上构建了一个270V输入,360V输出,300W的LLC谐振半桥变换器,主开关管选用IRF460,副边整流二极管选用 DSEll2—12A,变压器原副边匝比n=0.342,谐振网络参数为Lr=27.4μH,Lm=137μH,Cr=92nF。如图7所示,VAB为桥臂中点电压,ir为谐振回路电流的实验波形图。图8和图9分别是满载与轻载时上、下两个MOS管的vgs和vds波形,从实验中也可以看出即使在较轻负载的情况下仍然能满足开关管零电压开通的条件,LLC谐振变换器能在宽范围内实现零电压开关,在300W时其变换效率可达95%以上。

LLC型串并联谐振变换器参数分析与运用

  5 结语

  本文对LLC型串并联谐振半桥变换器在f0

关键字:LLC  变换器 编辑:冀凯 引用地址:LLC型串并联谐振变换器参数分析与运用

上一篇:大功率DC/DC变换器的研制
下一篇:一种有源功率因数校正器的设计与实现

推荐阅读最新更新时间:2023-10-18 14:44

一种具有自限流功能的LLC谐振变流器拓扑
一、引言 在发电厂和变电站中,供给二次回路的直流电源称为电力操作电源。电力操作电源主要用于向控制、保护、信号、自动装置回路以及操动机械和调节机械的传动机构供电,同时还作为独立的事故照明电源。目前发电厂和变电站普遍应用的操作电源是硅整流型操作电源(又称相控式操作电源),它采用硅整流型充电装置对蓄电池充电,由蓄电池向二次回路提供不间断的直流电源。但这种电源存在许多缺陷,如充电装置效率差、稳压稳流精度低、纹波大、电池保持容量低、寿命短等。随着电力电子技术的发展,传统的硅整流型电源正在逐渐被高频开关电源取代。高频开关电源具有体积小、重量轻、效率高、电气性能好等许多优点。此外,由于高频开关电源采用模块化结构和n+1备份方式,使电源装置的可
[电源管理]
移相全桥DC/DC变换器双闭环控制系统设计
提出移相全桥DC/DC变换器闭环系统设计方案,基于PWM 控制 器件UCC3895设计一个双闭环 控制 系统,该系统采用电压外环和电流内环的控制方式,在电压环中引入双零点、双极点的PI补偿,电流环中引入斜坡补偿,结合实应用对闭环系统进行实验测试,结果表明所设计的闭环系统动态响应快,稳定性好。 随着我国 电源 行业的发展,在中大功率应用场合,采用PWM控制技术的移相全桥DC/DC变换器越来越受到人们的关注,随着PWM控制技术逐渐向高频化方向发展,全球各大集成 电路 生产商竞相研制出各种新型的PWM控制器件,其中TI公司推出的UCC3895是一款具有代表性的移相全桥控制器件。该器件既可以工作于电流模式也可以工作于电压模式,又可以
[模拟电子]
ISDN数字电话用高压非隔离降压/升压变换器
Vishay Siliconix公司的S121j o ISDN应用设计的-48V到+5V或+3.3V变换器。它所含的集成未接地反馈误差放大器提供直接输出电压稳压。这种方法消除了所需的外部并联稳压器。Si9121也含有高电压耗尽型MOSFET,这可使变换器能直接从高输入总线电压供电而不需要外部启动电路。由于非隔离拓扑结构结合简单的磁设计使Si9121能为完全的ISDN电源提供单片解决方案。为了减少外部元件数,Si9121也含有95kHz振荡器和软启动电路。图1示出Si9121功能框图。它采用SOIC-8引脚封装。 Si9121特性有:·固定+5V或+3.3V输出 ·集成未接地反馈放大器 ·片上70V、1.5ΩN-沟MOS
[应用]
驱动白色LED的升压式变换器MAX1848
摘要:MAX1848以恒流驱动白色LED,在峰窝电话、PDA及其它便携式电子产品中作背光源。 关键词:白色LED;可编程软启动;模拟电压亮度调节   1 引言 MAX1848是一种由升压式DC/DC变换器加上恒流电路等组成的白色LED驱动器,在便携式电子产品中作彩色LED的背光源。该器件的主要特点是,对串联的白色LED恒流供电,LED的亮度一致性好;转换率高,典型值为87%;可用模拟电压来调节LED的亮度,并可用电平来控制LED的亮、灭;内部有高压MOSFET作开关管,输出功率可达0.8W;振荡器频率1.2MHz,其电感器及电容器可采用小容量、小尺寸元件,减小印制板的面积;工作电压2.6V到5.5V;
[电源管理]
驱动白色LED的升压式<font color='red'>变换器</font>MAX1848
一种新颖的ZVZCS PWM全桥变换器
摘要:提出了一种新颖的零电流零电压开关(ZCZVS)PWM全桥变换器,通过增加一个辅助电路的方法实现了变换器的软开关。与以往的ZCZVSPWM全桥变换器相比,所提出的新颖变换器具有电路结构简单、整机效率高以及电流环自适应调整等优点,这使得它特别适合高压大功率的应用场合。详细分析了该变换器的工作原理及电路设计,并在一台功率为4kW,工作频率为80kHz的通信用开关电源装置上得到了实验验证。 关键词:全桥变换器;零电压开关;零电流开关;软开关;脉宽调制 引言 移相全桥零电压PWM软开关(PSFBZVS)变换器与移相全桥零电压零电流PWM软开关(PSFBZVZCS)变换器是目前国内外电源界研究的热门课题,并已得到了广泛的
[应用]
高性能混合集成DC/DC变换器设计
   1引言   随着航天航空等 电子工程 系统小型化技术的发展,整机电源供电系统开始采用由混合集成DC/DC电源变换器构成的分布式供电设计方案,取代传统的由分立元器件组成的电源集中供电方式。军用混合集成DC/DC电源变换器以其体积小、重量轻、功率密度高、效率高、可靠性高等特点,被广泛用于军事电子控制系统。双路输出是DC/DC电源变换器常有的输出形式,通常,其输出有主副路之分,对双路输出的每路1有一定的要求,诸如双路输出负载平衡或副路加载时主路不能空载等要求,即存在所谓的交叉调整率问题,使双路输出DC/DC变换器的使用受到限制。而在一些特定的场合,要求DC/DC变换器双路输出没有主副路之分,相互独立输出。本文主要介绍低纹波双路输
[电源管理]
高性能混合集成DC/DC<font color='red'>变换器</font>设计
美高森美推出业界首个用于光纤网络的单芯片四通道变换器
致力于提供帮助功率管理、安全、可靠与高性能半导体技术产品的领先供应商美高森美公司(Microsemi Corporation,纽约纳斯达克交易所代号:MSCC)宣布扩大其市场领先的光传送网 (optical transport network, OTN) 单芯片产品组合,提供用于OTN传送和交换应用的ZL30165线卡 (line card)器件。ZL30165是业界首个用于OTN传送和交换应用的单芯片线卡器件,并被数家主流的OTN设备制造商选择用于40G和100G设备。 产品的关键特性包含四个集成数字锁相环(digital phased lock loop, DPLL),能够锁定多达10个输入目标muxponder应用,在
[网络通信]
基于SEPIC变换器的功率因数校正电路的参数设计与分析
1. 引言   由于电力电子装置的应用日益广泛,使得谐波污染问题引起人们越来越多的关注。电力电子技术的进步,使得功率因数校正问题的研究也越来越深入。传统的功率因数校正电路由BOOST电路构成。这种电路控制复杂,输出电压比输入高,难以实现输入输出的电气隔离。而由反激电路构成的功率因数校正电路必须工作在电感电流断续的状态,往往需要大体积的EMI滤波。SEPIC 电路用于PFC有着其天然优势。由于其前级类似于BOOST 从而可以保证输入电流的连续,减小输入EMI的设计;而其输出又类似于反激,易于实现电气隔离。近来,SEPIC-PFC电路正受到越来越多的关注。   单独的SEPIC电路只需工作在电流断续状态就能自然实现PFC,这里的断
[电源管理]
基于SEPIC<font color='red'>变换器</font>的功率因数校正电路的参数设计与分析
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved