一种有源功率因数校正器的设计与实现

最新更新时间:2009-01-03来源: 国外电子元器件关键字:PFC 手机看文章 扫描二维码
随时随地手机看文章

  1 引言

  在电力电子技术及电子仪器中,所需直流电是南220 V交流电网经整流得到的。交流电源经全波整流后,通常接一个大电容器,以得到波形较为平直的直流电压,但整流器一电容器滤波是一种非线性元件(二极管)和储能元件(电容)的组合。由于整流电路中二极管的非线性,虽然输入交流电压ui是正弦的,但输入交流电流ii波形却产生畸变,呈脉冲状。大量应用整流电路,要求电网供给严重畸变的非正弦电流,由此产生的谐波电流对电网产生危害,导致输入端功率因数下降。为了减小AC—DC交流电路输入端谐波电流形成的噪声及对电网产生的谐波“污染”,保证电网供电质量,提高电网可靠性;为了提高输入端功率因数,以达到节能的效果,必须限制AC—DC交流电路的输入端谐波电流份量。因此体现了功率因数校正(PFC)电路的重要性。

  2 有源功率因数校正器原理及工作特性

  图1给出有源功率因数校正电路原理。主电路由单相桥式整流器和DC—DC变换器组成,包括电压误差放大器VA,基准电压Vr,电流误差放大器CA,乘法器M及驱动器等,负载可以是开关电源。

一种有源功率因数校正器的设计与实现

  主电路的输出电压Vo与基准电压比较后,输入给VA,整流电压Vdc的检测值和VA的输出电压Vo信号共同加到乘法器M的输入端。

  M的输出作为电流反馈控制的基准信号,与开关电流iS检测值比较后,经过CA加到逻辑及驱动器上,用以控制开关VTr的通断,使输入电流ii与Vdc的波形基本一致,从而大大减少了电流谐波,提高了输入功率因数,保持Vo的恒定。

  3 有源功率因数校正器应用

  为便于实现有源功率因数校正器,将其控制电路集成化,即在输入电路和DC/DC变换器之间插入一个变换器,通过特定控制电路使电流跟随电压,并反馈Vo使之稳定,从而使DC/DC变换器实现预稳。

  TDAl6888是一种高性能功率因数校正器集成控制器,已广泛应用于许多功率因数校正器中。图2示出具有连续电感电流流过负载的功率因数校正原理图。由桥式整流器VDl~VD4、铝电解电容C3A、C3B、C3C、TDAl6888内的PFC控制器、升压电感L2、升压二极管VD5、功率开关 VQl(MOSFET)和电流传感电阻R6等组成。

一种有源功率因数校正器的设计与实现

  当输入交流电压之后,通过高阻R2A、R2B的电流对TDAl6888管脚9上的电解电容C11A充电,只要CllA被充电到管脚9(VCC=11 V)的门限电压的以上,TDAl6888中的PFC控制器被触发启动。C1 lA容量应足够大(至少不低于22μF),管脚9的电压VCC在下跌到ll V的关断门限电压之前,TDAl6888被激活,为VQl栅极发送驱动脉冲。TDAl6888电源电压由L2的辅助绕组AUXl、C18和VDll、 R28、V02及CIlA组成。在VQl漏极通过VD6和C4和VQl栅极驱动电路相连,当直流母线电压出现一个过冲电压时,通过VD6在100 us之内被检测,并使因过冲电压而停止工作的升压开关VOI开始运行。在TDAl6888待机工作时,直流母线电压仍保持在正常的电平上。如果DC直流母线电压低于正常值,则TDAl6888依靠VD6和R2启动。当TDAl6888的第一个过门限电压产生时,即直流母线电压比设定值380V高出10%时,为第一个过门限电压,通过TDAl6888内的OTA2和乘法器关断VQl,以阻止DC母总线电压的升高。当TDAl6888的第二个过门限电压产生时,直流母线电压比设定值380V高出20%时,为第二个过门限电压,则TDAl6888迅速关闭PFC输出,并与输入端的压敏电阻R30相结合,执行过电压保护功能。

一种有源功率因数校正器的设计与实现

  系统工作频率由连接到TDAl6888的16引脚(ROSC)上的电阻R24决定。当R24=1lOkΩ时,fPFC=50kHz;当R24=5l kΩ时,fPFC=100 kHz。本试验选取R24=110 kΩ。

  4 结语

  由TDAl6888内的PFC控制器组成的有源PFC升压变换器,具有下述功能:一是在交流输入端产生与交流输入电压同相位的正弦电流波形(如图3),具有低谐波畸变和几乎接近于l的高功率因数;二是输出不随交流输入电压波动变化的高稳定的直流电压。

  对开关电源来讲,功率因数校正技术是一门新兴技术,它对提高开关电源效率发挥了重要的作用。从控制技术上来讲,软开关技术、PFC技术是提高电源品质的关键,有关研究正处于迅涑发展中。

关键字:PFC 编辑:冀凯 引用地址:一种有源功率因数校正器的设计与实现

上一篇:LLC型串并联谐振变换器参数分析与运用
下一篇:带跳周期模式的高效升压DC/DC变换器

推荐阅读最新更新时间:2023-10-18 14:44

高效节能技术应对更严格电源能效规范要求
     中心议题: 高效节能技术应对更严格电源能效规范要求 解决方案: 优化PFC控制模式,结合PFC与主转换器 采用更好器件及拓扑结构,提升电源工作能效 采用新的PFC架构,提升效能     随着人们节能环保意识的不断增强,计算机、照明、消费电子、电源适配器和家电等领域越来越多地出现了更严苛能效法规的限制。以在全球拥有广泛影响力的美国“能源之星”项目为例,新的1.0版固态照明(SSL)规范已从2008年10月1日开始实施,2.0版适配器/外部电源规范和3.0版电视规范也于同年11月1日开始实施,而2.0版的机顶盒(STB)规范也于2009年1月1日生效。     这些能效规范在工作能效、待机
[电源管理]
罗姆开发出业界首创搭载PFC控制功能的高效AC/DC转换器IC
日本知名半导体制造商ROHM(总部位于日本京都)面向TV和工业设备用电源等100W级别的中功率电子设备,开发出将PFC(功率因数改善)控制器与QR(准谐振)控制器一体化封装的高效AC/DC转换器IC“BM1C001F”。 本产品在PFC控制器上同时搭载ON/OFF设定功能与PFC输出新控制方式,为业界首创※。而且,还实现了轻负载时的效率提升,大幅降低了设备的待机功耗。使用此款IC的电源电路,还可满足国际标准能源之星6.0所规定的水平。不仅如此,通过将两种控制器一体化封装,可减少零部件数量,因此,还有助于进一步实现电源的小型化。 本IC已于2013年9月份开始出售样品(样品价格100日元),于2013年10月份开始投入量
[电源管理]
提高电源转换效率的交错式PFC控制技术及应用
多年以来,多种创新型功率因数校正(PFC)技术不断问世。采用升压拓扑结构的有源功率因数校正就是首批创新技术中的一种。由于不再需要大体积的无源PFC解决方案,所以有源功率因数校正技术提高了功率密度。另一个创新技术为转移模式PFC,该技术消除了PFC预调节器的升压二极管中的反向恢复电流,不但降低了转换器的 开关 损耗,而且还提高了系统效率。用来增加功率密度并提高系统效率的PFC下一个创新技术为交错式PFC预调节器。 电源 设计工程师设计交错式PFC转换器已有数年,但因缺少合适的 控制 器,所以对 电源 控制 的设计必须非常谨慎。为使交错式PFC设计变得更轻松,德州仪器(TI)开发出两款交错式PFC控制器:一款为针对平均电流模式预
[电源管理]
高效节能技术应对更严格电源能效规范要求
    随着人们节能环保意识的不断增强,计算机、照明、消费电子、电源适配器和家电等领域越来越多地出现了更严苛能效法规的限制。以在全球拥有广泛影响力的美国“能源之星”项目为例,新的1.0版固态照明(SSL)规范已从2008年10月1日开始实施,2.0版适配器/外部电源规范和3.0版电视规范也于同年11月1日开始实施,而2.0版的机顶盒(STB)规范也于2009年1月1日生效。   这些能效规范在工作能效、待机能耗及功率因数方面提出了比此前版本更高的要求。如2.0版适配器规范的工作能效(以大于49 W输出功率为例)要求是不低于87%,而此前的1.1版要求为不低于84%。另外,3.0版电视机规范的待机能耗要求为不超过1 W,后续规范
[电源管理]
高效节能技术应对更严格电源能效规范要求
基于LED路灯的PFC开关电源设计方案
LED路灯是低电压、大电流的驱动器件,其发光的强度由流过LED的电流决定,电流过强会引起LED的衰减,电流过弱会影响LED的发光强度,因此LED的驱动需要提供恒流电源,以保证大功率LED使用的安全性,同时达到理想的发光强度。用市电驱动大功率LED需要解决降压、隔离、PFC(功率因素校正)和恒流问题,还需有比较高的转换效率,有较小的体积,能长时间工作,易散热,低成本,抗电磁干扰,和过温、过流、短路、开路保护等。本文介绍了基于LED路灯的PFC开关电源设计方案。方案采用有源PFC功能电路设计的室外LED路灯电源,内置完整的EMC电路和高效防雷电路,符合安规和电磁兼容的要求。最后测试结果也表明,本方案所设计的PFC开关电源性能良好、可靠
[电源管理]
基于LED路灯的<font color='red'>PFC</font>开关电源设计方案
充电PFC无损吸收主电路
正常充电模式的充电过程一般在家庭和公共场所进行,正常充电模式的充电功率等级通常为6.6kW,典型的充电时间为5~8小时。正常充电模式和应急充电模式中的充电功率变换器相类似,正常充电模式也可采用单级AC/DC变换器。但由于带PFC功能的单级变换器,开关管的峰值电流很大。在两级变换器中,PFC级可采用传统的Boost升压型电路,开关管采用软开关或硬开关均可。但为了提高效率,应选择软开关Boost变换器。   传统的AC/DC全波整流电路采用的是整流   电容滤波电路。这种电路是一种非线性器件和储能元件的组合,输入交流电压的波形是正弦的,但输入电流的波形发生了严重的畸变,呈脉冲状。由此产生的谐波电流对电网有危害作用,使电源输
[电源管理]
充电<font color='red'>PFC</font>无损吸收主电路
三个单相Boost PFC转换器组成三相PFC整流器
  图1所示为输入用三个单相Boost PFC转换器9每相一个组成的三相PFL整流器。   三相PFC整流器,采用了三个单相Boost PFC转换器模块,交流输入端接成Y连接或△连接,输出端并联,共用一个滤波电容C。该电路的特点是所用开关数量最少;每一个单相Boost PFC转换器模块的控制电路(图中未画出)与以前所述单相Boost PFC转换器相同,可以应用平均电流控制法、峰值电流控制法等进行控制,但输出电压反馈信号必须有隔离,开关的门极驱动信号也必须有隔离。   与单相Boost PFC转换器相比,图8-42所示三相PFC整流器的输出电压高,只适用于输人电压低的情况。但其后级只需要一台DC/DC转换器,可以降低成本。每
[电源管理]
三个单相Boost <font color='red'>PFC</font>转换器组成三相<font color='red'>PFC</font>整流器
采用UCC3817控制IC设置PFC升压调节器
   摘要   从理论上说明如何使用采用UCC3817控制IC的电流感应变压器设置一个PFC升压调节器。    1. 原理图   原理图如图1所示。    2. 工作原理   1. 电流感应变压器T1和T2用于感应PFC级的输入电流。   2. 这两个电流的和将为升压电感电流。   3. 电阻器R1和R2用于复位电流感应变压器。   4. RSENSE为用于影响输入电流波形的电流感应电阻。   5. 电容器Cf用于过滤高频噪声。    3. 设置电路   1、电流感应变压器二次侧匝比   c、可以对匝数N进行设置以降低损耗。   d、电
[电源管理]
采用UCC3817控制IC设置<font color='red'>PFC</font>升压调节器
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved