采用开关电源实现高速模数转换器的供电

最新更新时间:2009-09-07来源: 今日电子关键字:开关电源  ADC  DC/DC转换器  DP2114 手机看文章 扫描二维码
随时随地手机看文章

    系统设计工程师常被要求降低总体功耗,以减少对我们环境的影响,同时降低投资和运营成本。他们还需要提高电路密度,以便实现外形尺寸更小的电子系统,并且能在更严苛的环境下工作。遗憾的是,若将高功耗解决方案整合到这些系统中,会带来极大的散热问题,而使得其他目标也无法实现。

    传统上,ADC制造商一般推荐采用线性稳压器为转换器提供干净的电源。线性稳压器能够抑制系统电源中经常出现的低频噪声。此外,铁氧体磁珠和去耦电容相结合的方法可用来减少高频噪声。这种方法虽然有效,但却限制了效率,特别是在线性稳压器必须从高出其输出电压几伏的电源轨进行降压调节的系统中。低压差稳压器(LDO)的效率通常为30%~50%,而DC/DC稳压器的效率则高达90%。图1显示降压型开关稳压器如ADI公司的ADP2114的典型效率。

图1 ADP2114开关稳压器的典型效率

    DC/DC转换器的效率虽然比LDO高很多,但DC/DC转换器在直接为高速模数转换器供电时,往往由于噪声太大而会导致性能大幅下降。这种噪声至少有两种来源:通过电源纹波直接进入转换器的噪声,以及由于磁耦合效应引起的噪声。电源纹波在ADC的输出频谱中以不同的音调(或者杂散)出现,或者导致底噪全面提高。ADC对这些不同音调的易感性可以进行表征,通常在转换器数据手册中以电源抑制比(PSRR)表示。但是PSRR无法表示对转换器底噪的宽带效应。开关电源中产生的大电流通常会产生很强的磁场,该磁场会与电路板上的其他磁性元件产生耦合,包括匹配网络中的电感,以及用于耦合模拟和时钟信号的变压器等。进行电路板布线时必须小心仔细,以防这些磁场与关键信号耦合。

省电(效率优势)

    虽然半导体公司一直在推出更高效率的ADC、DAC和放大器,但是与用DC/DC稳压器替代LDO所获得的总系统功效相比,这些改进实在是微乎其微。这里以一个采用3.3V电源提供100mA电流或者330mW功率的线性电路为例,采用将5 V降压调节至3.3 V的典型LDO时,总功耗将为500mW,而仅有330mW提供有用功。原始电源必须比实际所需的电源大51%,这样既浪费能源又增加了成本。通过比较,不妨考虑效率为90%的DC/DC稳压器。5V电源的总电流要求将为74mA(这是一个更低得多的要求),可同时降低了功耗和成本。

    在无线基站等系统中,电源通常由单个高电流电源提供。该电源通常通过大量不同的降压级向下降压调节,然后再到达线性和混合信号元器件。尽管每个降压级的效率都很高,但是它们也会浪费相当多的功率。图2显示了一个电源从12V电源轨进行降压调节的典型系统,其使用了三个或更多降压级为ADC和其他模拟器件提供电源。最后一级一般是LDO,通常,这一级的效率在降压级中最低。当按下图所示级联两次之后,即使是效率为90%的高效率DC/DC稳压器也仅能达到81%的效率,而最后的稳压级必须是LDO时,效率则会更低。

  图2  典型的系统级电源

    随着DC/DC电源技术的进步以及更高开关频率的发展,DC/DC电源实现了在不造成性能损失的情况下,以大幅提高的效率直接为ADC供电。图3显示了省去LDO的典型降压电路。 

 图3 简化的系统级电源

    此外,许多系统为每个ADC采用单独的LDO。单独的LDO用于提供不同ADC之间的噪声隔离,并降低每个LDO的功耗。这种单独提供的方式分散了LDO产生的热量,并且可使用小封装形式的LDO。由于开关转换器具有更高的效率,因此一个开关可为多个ADC和其他线性元件供电,而不会产生过多功耗和热量,而采用单个大LDO则会发生这种情况。在开关电源的输出端采用滤波铁氧体磁珠可为采用相同电源轨的元件提供隔离。采用开关电源减少了系统对稳压器的需求,由于省去了多余的LDO及其相关电路,因而可明显实现省电以及降低电路板成本。

实验室电路

    诸如ADI公司的AD9268等16位、125MS/s模数转换器能够实现极低的噪声以及78dB的信噪比(SNR)指标。极低的–152dBm/Hz底噪使其成为评估开关电源的理想之选。DC/DC转换器引起的额外噪声或杂散量可以很容易在转换器的输出频谱中显示出来。该转换器与ADI ADP2114 PWM降压型稳压器是配套产品。这款双路输出降压型稳压器的效率高达95%,以高开关频率工作,并且具备低噪声特性。

    一项实验室的研究对采用线性稳压器与采用开关稳压器时的ADC性能进行了对比。这些实验是采用转换器的用户评估板进行的。转换器有两个输入电源:AVDD为模拟部分供电,DRVDD为数字部分和输出部分供电。为了进行比较,转换器最初采用两个线性稳压器(ADI公司的ADP1706)进行评估,分别提供AVDD和DRVDD电压。该测试的设置如图4所示。然后转换器采用一个开关稳压器供电,如图5所示。其中,一个开关稳压器的输出提供给AVDD,另一个输出提供给DRVDD。

图4 采用ADP1708 LDO进行线性电源测量的框图

图5 采用ADP2114开关稳压器进行开关电源测量的框图

    在这两种设置中,模拟输入源都采用罗德与施瓦茨公司 (R&S)的SMA-100信号发生器和K&L带通滤波器。模拟输入通过一个双巴伦输入网络提供,将信号发生器的单端输出转换至ADC的差分输入。采样时钟源为低抖动Wenzel振荡器,也通过用于单端-差分转换的巴伦电路供电。两次测量的输入电源轨(在稳压器前面)均设定为3.6V。  

ADC性能测量结果

    在每种电源配置情况下,转换器的性能都进行了测量,以确定采用开关电源时性能是否下降。SNR和SFDR(无杂散动态范围)则通过一组输入频率进行测量;结果如表1所示,采用线性稳压器与采用开关电源相比,SNR或SFDR性能未出现大的变化。

    开关稳压器可以异步工作,也可以与转换器的采样时钟同步而不影响转换器性能。同步可在应用中提供更多灵活性,这在应用中可能成为一个优势。

FFT图谱

    图6和图7分别显示了采用线性电源与采用开关电源时,模拟输入频率为70MHz 的AD9268的FFT(快速傅立叶变换)图谱。

 图6 采用ADP1708线性电源的70MHz模拟输入

 图7 采用ADP2114开关电源的70MHz模拟输入

效率测量结果

    表2显示每个电源解决方案所测得的效率。采用3.6V输入电压时,开关稳压器将效率提高了35%,功耗节省了640 mW。这里节省的功耗为单个转换器节省的功耗,在采用多个ADC的系统中,节省的功耗还将显著增加。

散热图像

    图8和图9显示了采用LDO电源与采用ADP2114时,电路板电源部分的散热差别。两个图像采用相同的缩放比例。图8中SP01、SP02和SP03测量点显示线性稳压器的温度。图9中的SP06显示ADP2114的温度,它比图9中显示的线性稳压器的温度低10~15℃。SP04显示AD9268的温度,该温度在两个图像中差不多。还需注意的是,图9中的总背景温度更高,一个串联阻塞二极管(未标注)正在处理更高的热负载。  

图8 采用线性电源的AD9268评估板的散热图像

图9 采用ADP2114电源的AD9268评估板的散热图像

电路图详解

    图10提供了开关稳压器的详细电路图,该稳压器被配置成在强制PWM模式下工作,通道设置为2A单独输出。通过在FREQ引脚和GND之间放置一个27kΩ的电阻,稳压器的开关频率被设置为1.2MHz。除了图中的电路之外,在开关和ADC之间还包含一个铁氧体磁珠,ADC电源引脚附近放置了标准的旁路电容。该设计可达到220μV的开关纹波,在ADP2114输出端的高频噪声低于6μV。AD9268附近加设的铁氧体磁珠和旁路电容将开关纹波降至300nV,并将ADC电源引脚处的噪声降至不到3μV。

图10 ADP2114电路配置

    这里还提供了材料清单和布线信息。请注意,在布局中,开关电感L101和L102位于ADC和信号通道元件电路板的背面。这种布局有助于将这些电感和电路板顶部的元器件(特别是信号和时钟通道中的巴伦)之间的电压耦合降至最小。在采用开关转换器的布线中,需注意避免磁场或电场耦合。  
 

图11  ADP2114和AD9268的相对位置

结语

    本文论证了在仔细遵循设计实践技巧的情况下,模数转换器可以直接采用开关电源供电,而不会造成性能损失。与采用ADP1708线性电源相比,采用ADP2114开关电源供电时,转换器的性能未出现下降。而采用开关电源可将电源效率提高30%~40%,并且能大幅降低总功耗(甚至超过简单地选择较低功耗的转换器)。在许多系统中,这些器件都需要连续工作,因此采用开关电源可大幅降低运营成本,并且性能也不会出现下降。

关键字:开关电源  ADC  DC/DC转换器  DP2114 编辑:金海 引用地址:采用开关电源实现高速模数转换器的供电

上一篇:一种高效反激式开关电源的设计与性能测试
下一篇:开关电源多路输出技术控制方法综述

推荐阅读最新更新时间:2023-10-18 14:49

技术文章—操纵MCU SPI接口以访问非标准SPI ADC
问题:能否用MCU访问非标准SPI接口? 答案:可以,但可能需要做一些额外的努力。 简介 当前许多精密模数转换器(ADC)具有串行外设接口(SPI)或某种串行接口,用以与包括微控制器单元(MCU)、DSP和FPGA在内的控制器进行通信。控制器写入或读取ADC内部寄存器并读取转换码。SPI的印刷电路板(PCB)布线简单,并且有比并行接口更快的时钟速率,因而越来越受欢迎。而且,使用标准SPI很容易将ADC连接到控制器。 一些新型ADC具有SPI,但有些ADC具有非标准的3线或4线SPI作为从机,因为它们希望实现更快的吞吐速率。例如,AD7616、AD7606和AD7606B系列有两条或四条SDO线,在串行模式下可
[模拟电子]
技术文章—操纵MCU SPI接口以访问非标准SPI <font color='red'>ADC</font>
集成RCC式开关电源技术方案及应用
线性稳压 电源 因具有 电路 简单和成本低廉的优点,一直在低功率应用中倍受欢迎。这个线性稳压 电源 只需少量元件,且与 开关 电源SMPS(Switch Mode POWER Supply)相比,更易于设计和制造。然而,由于以下两个原因,近年来线性电源开始逐渐被替代:其一,许多线性电源都是作为PDA、无绳电话和 手机 等产品的外部电源(EPS)绑定销售。如今EPS必须遵循严格的新节能标准,而此类标准几乎将线性电源排除在外,因为线性电源通常无法达到工作效率和空载功耗方面的标准;其二,大多数先进的低功率SMPS在成本和简单性方面与线性电源相当。这里将探讨低功率SMPS在初步应用阶段的不足之处,并讨论一种可行的方法,以帮助设计工程师设计
[电源管理]
STM32使用ADC功能
1.关于ADC输入通道与GPIO口的输入关系需要查看STM32芯片手册(p31)而非数据手册。 2.外部触发源指的是触发ADC采样的触发信号,这与1的GPIO口输入是两个不同概念。而JEXTBEL 或者EXTBEL 决定具体是哪个触发源。 3.大的方向,触发模式分为了 ADON位触发启动和外部触发启动ADC转换两种。用后者就行了 4.当我们使用一个ADC要采集多个通道时,单独规则组由于只使用了一个数据寄存器,并且是整个组转换完后才会触发中断,因此数据会覆盖,这种情况下需要使用DMA方法(后面采用试试),这时数据写到SRAM中了。而单独使用注入组总共可最多有四个通道,对应四个数据寄存器,不存在覆盖。 5.关于注入通道
[单片机]
STM32使用<font color='red'>ADC</font>功能
现代高频开关电源的定义和结构形式
  开关电源是现代电子电器和电子设备(如电视机、VCD、个人计算机、测试仪器、生物医学仪器等)的心脏和动力。标志开关电源特性的参数有 输出电压和输出功率、开关频率、噪声和带载时参数的变化等。在同一参数要求下还有体积、重量、外观尺寸、效率、可靠性、对外界的电磁 干扰等性能指标。人们可以依此设计制造出完美满意的开关电源。   一般的电源,如直接从市电或电池吸取的原生态电能,在某种意义上来说是一种质量较差的“粗电”,这些“粗电”必须要经过转换才能成 为满足于设备要求的“精电”,开关电源就是把市电的“粗电”转换成直流电压稳定的“精电”的一种电源设各。   采用电力电子技术,把一种电能转换成另一种电能的方式有以下4种。   (1
[电源管理]
现代高频<font color='red'>开关电源</font>的定义和结构形式
教你如何正确的为开关电源选择其合适的电感
电感 是 开关电源 中常用的元件,由于它的电流、电压相位不同,所以理论上损耗为零。电感常为储能元件,也常与电容一起用在输入滤波和输出滤波电路上, 用来平滑电流。电感也被称为扼流圈,特点是流过其上的电流有“很大的惯性”。换句话说,由于磁通连续特性,电感上的电流必须是连续的,否则将会产生很大的 电压尖峰。 电感为磁性元件,自然有磁饱和的问题。有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和, 也有的应用不允许电感出现饱和,这要求在具体线路中进行区分。大多数情况下,电感工作在“线性区”,此时电感值为一常数,不随着端电压与电流而变化。但 是,开关电源存在一个不可忽视的问题,即电感的绕线将导致两个分布参数(或寄生参数),一
[电源管理]
教你如何正确的为<font color='red'>开关电源</font>选择其合适的电感
Buck-Boost PWM DC/DC转换器的级联
  利用三种最基本的PWM转换器,除了可以利用演化的方式派生出新的转换器之外,利用级联方式也可以派生出新的转换器。   将两个Buck-Boost电路组合后,可以得到单开关Buck-Boost级联,其演化过程如图所示。   其中,演化过程需要注意的是,第二级在如图(b)中的极性反转,以对应前级输出极性:在如图(c)中,第二级回路中加人一个二极管砀,以阻止与第一级连接后,在开关管V关断期间第一级电流窜人第二级。将如图(e)第一级与第二级中的开关管V,电容C重合,得到如图(d)所示的电路,其输出黼入关系为如图 Buck-Boost与Buck级联的演化过程。   如图 Buck-Boost与Buc
[电源管理]
Buck-Boost PWM <font color='red'>DC</font>/<font color='red'>DC转换器</font>的级联
SDS2000在开关电源分析中的应用
电源是所有电子产品不可或缺的组成部分,电源分为开关电源、线性电源等类型,其中开关电源已经成为数字计算、网络通信系统中电源的主流架构。开关电源的好坏关系到产品的整体性能。因此,在研发和生产测试中对于电源的精确分析显得尤为重要。SIGLENT推出的SDS2000超级荧光示波器配备强大的电源分析模块,支持绝大部分电源性能指标的精确测试测量。下面将通过分析电源板输入模块,给大家详细介绍SDS2000的电源分析功能。 以电源演示版STBX为例,其物理视图如图1所示: 图1 STBX STBX电路原理图如图2所示:  图2 原理图 在进行操作之前,首先应检查示波器、电源演示板是否运行良好,在保证示波器、电源演示板及探头等所需物品均没问
[电源管理]
SDS2000在<font color='red'>开关电源</font>分析中的应用
为何STM32H7的ADC数据不变
有人使用STM32H7系列的ADC模块,定时器触发ADC,数据通过DMA传输到内存。对某通道连续转换几次后求个平均值。他却发现ADC结果虽没有什么问题,但一批数据出来后就纹丝不动了。DMA传输本来设计成的Circular模式,感觉好像工作在Normal模式,结果显然有点不合理。 鉴于这个现象和所用芯片,估计是因为Cache使用方面的原因,客户也的确使能了Cache。具体怎么回事呢?我们一起来看看。 我这边使用H743Nucleo板和ST免费的STM32CubeIDE。STM32H743片内有个Vrefint信号,电压一般在1.2v左右,用它做ADC的输入信号来测试。用LPTIM触发ADC转换,每读到5个数据就求个平均值。
[单片机]
为何STM32H7的<font color='red'>ADC</font>数据不变
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved