系统结构与控制原理
升压+全桥逆变器和输出LC滤波器是大功率程控交流电源极为常用的拓扑之一。如图1所示,这是一种两级非隔离拓扑,其第一级是升压级,用于把模块整流电压升压到实际峰值直流电压(>325V);第二级是逆变级,用于把峰值直流电压转变为交流电压,再经LC滤波器得到50Hz的交流输出电压。全桥逆变器一般采用单极性控制方式,其特点是高频臂的两只功率管以较高的开关频率互补开关,保证可以得到理想的正弦输出电压波形;另两只功率管以较低的输出电压基波频率工作,从而很大程度上减小了开关损耗。该全桥逆变器并不是一个桥臂始终为低频(输出基频),另一个桥臂始终为高频(载波频率),而是以半个输出电压周期切换工作,即同一个桥臂前半个周期工作在低频,后半周则工作在高频,这样就保证两个桥臂功率管工作在均衡状态,提高了系统的可靠性。虽然该电路效率较高,但需要解决输入/输出之间的隔离问题。由于电缆测试仪的程控交流电源功率较小,若采用上述方案,则体积较大,且控制复杂。
图1 升压+全桥逆变器
若采用诸如LM1875单片集成功率放大器件,用±30V供电时,最大输出功率可达30W。其接法同TDA2030相似,有单双电源接法和BTL接法。BTL接法采用两片LM1875,连接成桥式电路,两边的电路结构和参数完全相同,右边的集成电路由左边的集成电路通过一负反馈电阻控制,反之亦然。它可获得更高的输出功率。如图2所示,二极管1N4007用于防止输出感性负载产生过电压而损坏器件。电路的放大倍数可由输出端至反相输入端的反馈电阻来决定。A类、B类、AB类等功放均是线性功放,信号总是停留在放大区,输出晶体管担当线性调整器来调整输出电压,其结果是降低了效率,限制了输出功率。
图2 LM1875的BTL接法
本设计采用D类音频放大器构成程控交流电源,只需对音频放大器的输入幅度控制就可以得到高纯度正弦交流电压。图3给出了所研制的程控交流电源系统结构框图,并且给出了每级的波形。其主电路由D类音频放大器+半桥和LC滤波器组成。
图3 D类音频放大器基本构成图
值得注意的是,半桥D类音频放大器因为能量可以双向流动而导致“母线电压提升”,这样会造成母线电容被充电。在半桥拓扑中,电源面临从功放返回来的能量而导致严重的母线电压波动或损坏,尤其是当功放输出低频信号到负载时。D类放大器区别于同步降压转换器的是,其参考信号是一个不断变化的音频信号,占空比围绕50%不断变化,电感电流双向,两个MOSFET作用相同。
主回路设计
采用国际整流器公司(IR) D类音频放大器的IRS2092,将误差放大器、PWM比较器、栅极驱动级电路和过载保护功能结合到一起,与IRS20955相比较具有很大的设计灵活性。用±100V供电时,最大输出功率可达500W,工作频率高达800kHz。如图4所示,它包括一个脉宽调制器、两个输出MOSFET和一个用于恢复被放大的音频信号的低通滤波器。由于输出500V正弦波有效值,输出端有一个低频升压变压器。音频输入信号与内部振荡器产生的三角波进行比较后,得到PWM信号,方波的占空比与输入信号电平成正比。没有输入信号时,输出波形的占空比为50%。图5显示了不同输入信号电平下所产生的PWM输出波形。
图4 程控交流电源主电路
使用D类音频放大器IRS2092的BTL接法,一个全桥使用两个半桥输出级,并以差分方式驱动负载。全桥结构是通过转换负载的导通路径来工作的,因此负载电流可以双向流动,无须负电源或隔直电容。在相同电源电压下,理论上提供的最大输出功率是半桥式放大器的4倍。它可以推广应用到更高输出功率的AC/AC转换电源。
关键技术设计
程控交流电源要求0~5V程控直流电平输入对应AC 0~500V(有效值)输出。通过改变D类音频放大器的正弦波输入的幅度即可实现最大500V正弦波对应输出。但是,首先需要解决0~5V程控直流电平如何转换成D类音频放大器的正弦波输入的问题。
CD4051是8通道数字控制模拟开关,有三个二进制控制输入端A、B、C和INH输入,相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码A、B、C来决定。INH是禁止端,当INH=1时,各通道均不接通。此外,CD4051还设有一个电源端VEE,以作为电平位移时使用,从而使得在单电源供电条件下CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰峰值达15V的交流信号。例如,若模拟开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。
图5 PWM输出波形
设计时,首先要考虑到如何产生固定幅度的正弦波基准信号以作为CD4051的模拟量输入。产生正弦波基准信号的方案有多种,可由文氏振荡器获得良好的正弦波形,也可先由比较器输出的方波经积分器得到三角波,再由差分放大器或采用低通滤波器的方法,实现三角波到正弦波的变换。
其次是高精度的正弦波基准信号的程控,最简单方法是使用微处理器进行12通道的A/D转换,用这12通道去控制CD4051的输入端A、B、C(INH=0时),即产生212=4096个状态。如图6所示,开关D1~D3控制模拟量低位,D4控制高位。通过合理计算R1a~R9d,0~4096个状态对应0~5V程控直流电平输入。需要注意的是,第4096状态产生的条件是12通道都为0时而第4个CD4051的INH=1时,它输出正弦波模拟量最大值。
图6 正弦波基准信号的程控图
图7 正弦电压输出波形
实验结果
采用上述主电路结构和控制方式研制了一台0~5V直流电平输入对应0~500V(有效值)AC输出的程控电源样机,固定频率50Hz,输出电流5mA,线性度≤1%,响应时间≤50ms,输出过流保护。5V程控正弦电压输出波形如图7所示,较好地满足了电缆测试仪程控电源的要求。
上一篇:改进的单级功率因数校正AC/DC变换器的拓扑综述
下一篇:基于TDS2285芯片的正弦波1200W逆变器开发
推荐阅读最新更新时间:2023-10-18 14:58
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况
- wince内存系统疑惑。
- 哪位高手指点一下,我用VS2005开发CE程序时,访问SQLSERVER数据库时,在仿真器上没有数据显示,在设计器中预览时有显示,不知什么原因?
- 不带OS的CS8900A的驱动的开发
- .net cf 没有GetDelegateForFunctionPointer函数
- 锐能微电力检测芯片RN8209 基准电压的地接220v 火线 怎么解释????
- 迅为4412开发板一键烧写QT程序到开发板
- WINCE摄像头采集后图像如何播放?
- AD815大电流差动驱动器的特点与应用
- 【Atmel SAM R21创意大赛周计划】ATMEL Studio例程移植
- 使用STM8S105K6的ADC1出现问题