一种改进型级联H 桥型变流器的调制策略研究

最新更新时间:2010-11-18来源: 互联网关键字:级联H桥型变流器  调制策略  谐波  脉冲 手机看文章 扫描二维码
随时随地手机看文章

  1 引言

  级联H 桥型变流器具有输出波形质量好、du/dt小、电磁干扰小等优点;采用独立直流侧供电,避免了内部环流问题;模块化程度高,维护方便,可靠性高,因此在许多大容量的应用场合得到广泛应用。然而由于受负载波动、整流电路特性以及移相变压器等因素的影响, 各级直流电压不可避免地会与设计值产生大小不同的偏差,此时级联H 桥的输出等效为多个不同幅值PWM 波形的叠加, 因此其谐波特性等指标相应发生变化, 影响了变流器的输出波形质量,并可能加剧du/dt,恶化系统的电磁环境,影响系统的稳定性和可靠性。文献[4]提出了直流电压不同的级联H 桥拓扑,为级联H 桥的大功率应用提供了另一种思路。因此研究直流电压不同情况下级联H 桥型变流器的运行特性,并采取适宜的调制算法以改善变流器的运行特性十分必要。

  在各种级联H 桥型变流器的谐波最优调制方法中, 最具代表性的是载波相移正弦脉宽调制(Carrier Phase Shift SPWM, 简称CPS鄄SPWM),对于五电平变流器而言,最低次谐波推至开关频率的4 倍处,提高了级联H 桥的传输带宽,获得了很好的调制特性。然而在各级母线电压不平衡的场合,由于直流电压的不平衡从根本上改变了CPS鄄SPWM的应用条件,CPS鄄SPWM 的调制效果将会下降,谐波特性将恶化。

  在此将时域的PWM 脉冲波形投影到由时间和面积构成的坐标系中,分析了五电平级联H 桥型变流器在直流电压不同时的输出特性, 对常规调制方法进行改进,达到优化变流器输出波形、提高系统工作效率和可靠性的目的。对于多级级联H 桥型变流器及混合型级联H 桥变流器,该分析方法及所建数学模型依然有效。

  2 桥臂开关脉冲的表示方法

  图1a 示出五电平级联H 桥型变流器的拓扑,两级H 桥的输出分别为Uo1和Uo2,两单元的直流电压分别为Udc1和Udc2。每级H 桥单元由两个桥臂并联组成,称为左臂和右臂,分别用L 和R 表示,两级H 桥单元串联构成总输出Uo。现以第1 级H 桥单元的左臂为研究对象, 该桥臂由两个功率器件VT1和VT2串联组成, 忽略死区的影响, 则该桥臂工作在180°导通状态,即任何时刻VT1和VT2的状态互补。

  图1a 的第1 级H 桥单元中,4 个开关管的状态决定了Uo1的输出,其值为0,Udc1或-Udc1。为便于分析, 并建立单相H 桥单元的输出与各开关管之间的关系,需要引入新的自变量。由于每个桥臂的两个开关器件状态互补,所以用两个变量即可表征单相H 桥单元的工作状态。据此绘制单相H 桥单元的左右臂上管驱动脉冲,如图1b 中波形1所示。


 

图1 五电平级联H 桥型变流器和单相H 桥单元脉冲

  现构造与波形Ⅰ相对应的桥臂净面积(PulseNet Area,简称PNA),其步骤如波形Ⅱ所示,0~2π 对应第1 个开关周期, 波形的高低取值与驱动脉冲一致,由此得到图中所示的阴影面积。该阴影区域的大小为此时单相H 桥单元的左臂PNA,用ξL表示。

  波形Ⅲ所示为左臂PNA 在时域上的投影,可见其取值范围为0~2π,对于一个在开关周期内居中分布的脉冲, 其PNA 大小确定后, 具体波形也得以确定,这样就确定了脉冲波形和桥臂PNA 之间的关系。

  3 单相H 桥单元的输出表达式

  以单相H 桥单元的直流母线负极为参考点,设ωc为开关频率的角频率,即ωcTs=2π,则对于任意时刻t,单个H 桥单元的输出可表示为:



 

  将图2 所示的开关周期中点向右平移相位φ1,得到U1(H)更加通用的表达式为:


 

  由式(1),(2)可知,一个开关周期内,单个H 桥单元的输出由U1(B),U1(H)组成,前者包含了调制波的信息;后者由周期性开关动作产生,包含了开关频率整数倍的各次谐波,且在不同开关周期内,各次谐波系数不同,决定于直流母线电压和左右桥臂的PNA。

  4 五电平级联H 桥单元的模型及调制策略

  对于图1 所示的五电平级联H 桥型变流器,根据式(1)可得其输出为:


 

  在对五电平级联H 桥单元调制策略的调整过程中应关注式(3)所示的第2 部分,各次谐波系数的典型特征是受多个变量影响, 且包含正余弦等三角函数,随谐波次数的增加,谐波幅值显着减小,因此应着重关注低次谐波的系数。当左右桥臂PNA 之和为2π 时,任意奇数次的谐波系数均为零。因此开关频率的谐波主要集中在了开关频率的偶数倍处。以2 次开关频率的谐波为例, 此时第1 级和第2 级输出波形中含有的2 次开关频率的谐波分别为:


 

  根据左右臂PNA 的概念,结合式(4),优化目标为使2 次开关频率谐波的有效值最小,实际上是对两级H 桥单元各自输出的2 次开关频率的谐波进行匹配和互相抵消的过程。两级H 桥单元合成的2 次开关频率的谐波为:


 

  由式(5)可得直流电压和参考电压幅值不同时的曲线组,如图2 所示。图2a 中,直流电压从内相位依次增大,当直流电压增大时,2 次开关频率谐波系数在一个周期内显着变大, 且在整个周期内正负幅值对称。图2b 中,参考电压幅值由内向外依次降低,即随参考电压的增加,2 次开关频率谐波系数降低。


 

图2 谐波系数曲线族

  根据图2, 通过调整各H 桥单元的参考电压幅值, 从而实现两组H 桥单元的2 次谐波曲线近似抵消,此时选取式(4)中φ1与φ2相差π/2,代入式(5)可知,实现2 次开关频率谐波抵消即期望下式成立。


 

  由图2 可知,式(6)若在ω1t1=π/2 处成立,则两级H 桥单元输出的2 次谐波可实现最大程度的相互抵消,由此可得:


 

  式(7)的计算中虽含有正弦和反正弦函数,但可通过查表法解决, 因此在实际应用中所占运算量很小,耗费资源少。对于其他偶数次开关频率的谐波特性的推导与2 次开关频率谐波特性的推导过程类似。因此在五电平级联H 桥单元中,采用所述的数学建模方法和模型表达式可清晰阐述整个变流器的输出特性。直流电压不平衡时,五电平级联H 桥型变流器的谐波特性会发生恶化, 采用传统的CPS鄄SPWM 等调制方法在谐波特性方面尚未做到最优,应用所提相关调制策略对传统CPS鄄SPWM 调制算法进行优化, 可进一步降低偶次倍开关频率的谐波含量,整个变流器的谐波特性得到更好的改善。

  5 实验分析验证

  实验中采用F28335 浮点型DSP 芯片作为控制器,开关器件选择IGBT,开关频率5 kHz。带对称三相阻感性负载,其中电感为1 mH,电阻为50 Ω。两级直流母线电压设置为100 V 和120 V。
  图3a 示出当直流电压不平衡时,采用传统CPS鄄SPWM 调制算法,不考虑直流电压影响时变流器a 相输出电压谐波。可见最低次开关频率的谐波出现在10 kHz 附近,且幅值与20 kHz 谐波相差不大;而由传统CPS鄄SPWM 的理论分析和实验结果可知,此时最低次开关频率的谐波应出现在20 kHz 处,由此可见直流电压的不平衡会导致变流器输出特性变差,且谐波出现的位置等信息也与理论分析吻合。


 

图3 实验波形

  图3b 示出采用所提考虑直流侧电压不平衡时的调制算法后变流器a 相电压波形。可见线电压呈阶梯型PWM 波,周期为0.02 s,与给定相同,台阶之间存在交叠的部分, 反映出各级直流电压存在不平衡。图3c 示出变流器输出的三相电流波形,可见三相电流正弦度很高,相位互差120°,周期为0.02 s,这表明应用所提调制方法,变流器的运行特性良好。

  图3d 示出应用所提改进型调制算法后,a 相电压的频谱特性。对比图3a 可见,该调制算法大幅削减了低次开关频率倍数的谐波含量, 特别是10 kHz频率处的谐波有明显改善, 弱化了开关频率与基波频率的缠绕度,减轻了滤波器的设计难度。

  6 结论

  针对直流侧电压不平衡时五电平级联H 桥型变流器的工作特性进行脉冲建模分析, 提出了每级H 桥单元左右臂脉冲净面积的概念, 并由此建立了能够反映整个变流器输出特性的数学模型。由于该模型是关于脉冲净面积的函数, 所以可用来制订和优化级联H 桥型变流器在特定工况下的调制方法。

  通过对模型的分析, 给出了消除开关频率奇次倍谐波的条件, 以及在直流侧电压不平衡时削减偶数次开关频率谐波的调制方法。实验表明,提出的模型分析方法正确、可行, 与实际情况吻合, 继承了传统CPS鄄SPWM 在直流侧电压相同时良好的谐波特性等指标, 同时实现了在直流侧电压不平衡时最大程度消除系统谐波,提高系统效率等优势,并具有较高的可行性和可靠性。因此该方法应用前景良好,可广泛应用于大容量新能源发电、电力牵引等场合。

关键字:级联H桥型变流器  调制策略  谐波  脉冲 编辑:金海 引用地址:一种改进型级联H 桥型变流器的调制策略研究

上一篇:IR2132驱动器及其在三相逆变器中的应用
下一篇:IR新款25 V及30 V 高性能PQFN功率MOSFET系列

推荐阅读最新更新时间:2023-10-18 15:03

闪电脉冲磁场环境的模拟
    摘要: 基于基尔霍夫定律和需要模拟的闪电磁场,计算了螺多管线圈的参数,制作了一个脉冲线圈对雷电脉冲磁场进行模拟;并根据电磁感应定律绕制了一个小的探测点线圈,对脉冲圈的磁场环境进行了测量。表明脉冲线圈内的磁场参数与理论计算基本吻合,且能够在大线圈内提供一定的均匀场环境,以对敏感器件进行电磁效应试验。     关键词: 螺线管线圈 雷电电磁脉冲(LEMP) 点线圈 闪电是一种强烈的瞬时放电现象,发生频率很高,全球每秒约发生1000次。在发生闪击时,闪电通道中会有高达几百万V的脉冲电压、几万A的脉冲电流,电流上升率会达到几万A/ μs ,所以在闪电通道周围的空间会产生强烈的闪电电磁脉冲(LEMP) 。随着
[应用]
基于调节振荡频率的脉冲占空比测量
0 引 言 占空比是脉冲信号的一个基本参数,不论在脉冲电源设计中,还是在脉冲信号的应用中,都需要知道脉冲的占空比。不同的应用情况对脉冲占空比的要求也不相同,因此准确快速地测量出脉冲占空比也就非常必要。测量占空比的方法主要有示波器比较法、单片机计算法、平均值转换法等。示波器比较法简单易行,但不能直接准确快速地给出读数;单片机计算法虽能直接准确地显示出数值,但需要软硬件配合,设计比较麻烦;平均值转换法电路简单,但需要将脉冲信号转换成平均值电压再进行A/D转换。而其他的一些测量方法虽能克服上述方法的缺点,但具体测量应用时却受到一些限制。于是,本文提出了一种全数字式的调频计数测量法。 1 测量原理 对如图1所示的脉冲信号uB
[应用]
Broadcom应用新脉冲噪声保护技术提高IPTV网络性能
在NXTComm 2007展会上展示的新型PhyRTM技术帮助运营商将噪声恢复性能提高10倍,并通过ADSL和VDSL调制解调器提供更好的话音、数据和视频融合业务 北京,2007年6月19日 - 全球有线和无线通信半导体市场的领导者Broadcom(美国博通)公司(Nasdaq:BRCM)宣布,推出新型脉冲噪声保护技术Broadcom PhyRTM。PhyR可帮助运营商和原始设备制造商(OEM)极大地提高话音、数据和视频业务质量。这个新型脉冲保护解决方案纳入了Broadcom业界领先的ADSL2+/VDSL2固件,极大地改善了残留比特差错率(BER)和脉冲噪声抵御能力,因此可以大幅提升用户享用话音、数据和视频融合业务的体验。
[新品]
油田电网的谐波治理
    油田生产设备中存在大量冲击性和波动性负荷,它们在运行中产生高次谐波,常会使电压波动、闪变,甚至导致三相不平衡。随着电力电子技术的广泛应用与发展,调速变频器在各种机泵运行中得到了广泛应用,在降低能耗的同时导致了电压波形畸变,产生了大量谐波,造成电网二次污染。在削弱和干扰电网经济运行的同时,常发生设备非正常启停,使设备自身安全性降低,电力计量仪表的误差增大。通过谐波治理,可以保证电力设备安全经济运行。 1 油田配电网谐波污染现状     通过对80 座变电所母线(6 kV)进行谐波测试了解到油田配电网谐波污染的现状如下:     (1)有78 座谐波电流及电压均在国标限值之内,主导谐波为5次、7次,超标率为2.5%。这与高压侧
[电源管理]
油田电网的<font color='red'>谐波</font>治理
关于数字脉冲输出的问题
关于labview数字脉冲的输出摸索了好一段时间啊!现在记录一下: 我想在以后得脉冲输出中主要采用以下的方式 DAQ定时设置为隐式 连续采样 在虚拟通道建立上将输出延迟设为3s 这样当运行到任务开始3s后,就会开始输出脉冲,其属性就为设置到write上的属性。这样就会一直发送脉冲 当延时时间结束后,会将新的属性设置到脉冲发送上,我们可以通过程序修改这个脉冲的属性来改变脉冲波形。 在这种结构下,如果将连续采样改为有限采样,那么将弹出错误。如下图 我不知道是为什么,于是继续摸索。 后来 发现,要想实现连续的脉冲发送 根本不需要添加 write函
[测试测量]
福禄克在手,数据中心威胁不在有
数据中心的UPS蓄电池寿命缩短或烧毁、UPS不能正常切换、计算机或服务器出现死机、电源柜故障、电缆发热或烧毁、设备遇雷击损坏等事故等等,这些关乎着数据中心管理人员的命运,如何将这些问题扼杀在摇篮里,只有在数据中心内进行定期定点的检测,才能将这些问题彻底解决。 来自数据中心的多份调查研究数据表明,在众多的宕机问题中,来自谐波的问题是威胁数据中心安全的最大隐患。如何防患于未然,首先要做的就是进行数据中心电能质量检测,保证谐波的正常,那么数据中心电能质量检测什么呢? “数据中心电能质量检测什么?” 我们知道许多客户认为在通过变压器输入的供电电源在经过UPS之后就会屏蔽了电压暂升、暂降和中断的问题,因此不需要检测电能质量参数了。其实这
[测试测量]
基带信号QPSK调制脉冲成型滤波器ASIC实现
0 引言   通常情况下, 带通信号 可以借由相对应的基带信号表示,比如若使用Sm表示一个实的带通信号,则该带通信号可以表示为如下情况:      其中Sl(t)为带通信号S(t)相对应的基带信号。一般情况下,信号Sl(t)是一个复值信号,由对应的实部与虚部构成,也即I路与Q路数据。并且我们也可以证明对于一个带通系统函数,我们也有与之相对应的基带系统函数。      因此,现代基带处理器也采用类似的方法首先处理处于基带的数字数据,然后通过模拟基带完成D/A转化后,再发送给射频器件完成上变频与信号发射。图1表示了WCDMA R-6协议中上下行方向上信号处理的过程。   
[模拟电子]
基带信号QPSK<font color='red'>调制</font>与<font color='red'>脉冲</font>成型滤波器ASIC实现
脉冲直流磁控溅射电源控制器试验分析
  磁控溅射镀膜机是制备全玻璃真空太阳集热管选择性吸收涂层的关键设备。为进一步提高选择性吸收涂层的性能,需要制备足够厚度的介质层,以降低选择性吸收涂层的反射率,增加涂层的吸收率。目前,Al-N/Al和Cu-Al/SS选择性吸收涂层介质层主要为AlN,采用磁控溅射镀膜技术制备选择性吸收涂层AlN介质层的沉积速率一般为1.5nm/min左右。而优质的选择性Al-N/Al和Cu-Al/SS选择性吸收涂层介质层厚度需要达到60nm~80nm。因此,仅制备介质层的工艺时间将达到40min~60min。工艺时间较长,生产效率较低。为了提高磁控溅射AlN介质层的沉积速率,提出了采用脉冲控制磁控溅射模式。   1 SPIK2000A型脉冲直流磁控
[电源管理]
<font color='red'>脉冲</font>直流磁控溅射电源控制器试验分析
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved