AP3765在超低待机功耗充电器方案上的应用

最新更新时间:2011-01-24来源: 互联网关键字:待机功耗  输出电压  AC-DC电流检测  功率转换  空载功耗 手机看文章 扫描二维码
随时随地手机看文章

    目前,世界各地的政府机构、环保组织,产业联盟都在积极地从市场准入、消费行为引导等各个环节推动着高效低耗的新型电源技术的发展。其中消费类电子产品的AC-DC适配器、充电器的待机或空载功耗问题受到越来越多的关注。由此也产生了许多新的技术标准。据不完全统计,目前业已颁布实施的,适用于不同行业与地区的这类标准有近20种之多。例如,美国的“能源之星”(Energy star)、中国的“泰尔认证”以及一些大的手机厂商提出的充电器星级标志等等。这些标准大多对空载损耗和工作效率作出了明确严格的要求。当产品与标准相符时,生产厂商可以在其产品上加贴相关标识,如“Energy star”,“TLC”,5星级等等。不仅直观地展示了该产品的技术特点,而且有效地引导着影响消费者的购买行为。

    当前,这些标准正逐渐地被世界各地的消费者所理解与认同,于此同时越来越多的行业管理机构也开始参考引用这些标准来制定相关的行业或区域的强制性技术规范。这不仅是从技术上的革新与挑战,也大大地提高了市场准入的门槛。因此有越来越多终端厂商和相关上下游配套供应商开始大规模采用新方法、新技术、新材料以应对对新标准提出的挑战。BCD作为电源管理集成电路的专业设计制造商适时地推出了AP376X系列原边PFM开关电源控制器,帮助电源工程师轻松应对新标准,新挑战。

    本文介绍的这款充电器,就是使用BCD的AP3765来实现的超低待机功耗以及高效率的设计。AP3765是BCD最新的PFM模式的开关电源原边控制器——AP376X系列中的一种。它延续了BCD最擅长的原边控制模式,在确保整体设计简洁可靠的同时,具有“零”电流启动和低工作电流的特性。也正是“零”电流启动和低工作电流特性使得采用AP3765设计的充电器可以满足目前五星级充电器的待机30mW的要求以及能源之星最新的标准。

    AP3765还具备系统开环保护,短路保护,软启动以及频率抖动等非常实用的功能。这些特点使得AP3765在小功率充电器,适配器,LED照明等应用领域具有显著的优势。

     图1是使用AP3765设计的充电器线路。下面对该设计进行简单说明。



图1 AP3765典型应用线路

    该电路是一个典型IC控制的反激电源。整个系统的工作模式由IC-AP3765控制,整个全电压负载段处于DCM。其中线路中可以分为输入部分,启动部分,反馈(电流电压)部分,功率转换部分和输出整流部分。输入部分由整流D1-D4,以及EC1、EC2、L1、L2组成。输入采用 “∏”型滤波线路,可以有效衰减差模噪声干扰。R1、R6、EC5、D6、R18组成了系统的启动和供电线路,也是调整待机功耗的一个重点区域。一般选择 4M—20M启动电阻,搭配2.2uF—10uF的启动电容。R8、R9、R10为电压反馈线路,其中FB脚的基准电压为4V。R2、R4、R11组成电流检测环路,电流检测电压为500mV。那么我们可以通过下面的计算公式得到输出电压,以及输出的电流。首先定义原边绕组与输出绕组的比为N1,输出绕组与反馈绕组的匝比为N2,输出电压为Vo,输出电流为Io,原边峰值电流Ipk。图2为AP3765制作5V700mA充电器的电压电流特性。

    输出电压(肖特基压降忽略)

    输出电流



图2 采用AP3765制作的充电器的电压电流曲线

    功率转换部分则是由AP3765驱动的三极管Q1,T1等组成。Q1导通时,IC驱动为高电平,能量存储到变压器T1,并且检测原边电流。Q1关断时,IC 驱动为低电平,能量通过变压器T1释放到后端,并且检测原边反馈电压。输出部分则由D8、C5、R14、EC3、R13组成。通过对各个组成的部分简要说明,可以看出使用AP3765进行系统设计非常简单,即便是对于初学者也能比较容易地完成。

    我们重点来说明降低待机功耗的方法,系统待机时的主要损耗点为:启动线路部分(R1、R6、R11)、IC(AP3765)工作和驱动部分(Q1)、能量转换部分T1、输出整流部分(D8、C5、R14)、输出假负载(R13)。其他像电容的损耗,取样电阻的损耗还有吸收电路的损耗在大部分情况下可以忽略。在实际设计中,启动电阻大约在20M左右,输出的假负载使用10K(5V输出)。IC的工作电压大约设计在20V左右,那么在230Vac/50Hz的输入电压条件下,我们可以先估算一下待机损耗大约:





    从上面可以看到系统的固定损耗大约在14mW左右,还有三极管和输出二极管的损耗。因为待机时,IC的工作频率是非常低的,大约只有几十Hz,所以三极管的开关损耗可以忽略不计,只考虑通态损耗。而输出二极管又基本没有电流通过,其损耗也可以忽略。

    这样全部损耗加起来,理论上大约在17mW左右。考虑到变压器、二极管损耗等,基本上应该是大约20mW,完全能够控制在充电器要求的30mW以内。使用功率计WT210实际测试的结果,大约24mW。

    以上这个案例所采用的设计思路与技巧具有一定的典型性和普遍性,适用于大部分常规应用。但针对一些特殊应用,就必需将电路中各个环节的损耗充分考虑,通盘折中平衡,才能达到最佳效果。例如,为了配合某一超低功耗单片机的特殊应用,我们曾经设计了一款空载电流只有20A的AC-DC电源。设计时我们对可能产生空载损耗的各个元器件做了全面分析,逐一测试调整,最大限度地降低了空载功耗。

      “降低损耗,提高效率”是电源行业永恒的主题,也是永恒的目标。本文以AP3765的典型电路为例,介绍了如何有效降低空载损耗的一些经验与方法。不仅仅是针对AP3765的应用,这些思路,这些方法与技巧也适用于其它小型低功耗充电器的设计。

关键字:待机功耗  输出电压  AC-DC电流检测  功率转换  空载功耗 编辑:金海 引用地址:AP3765在超低待机功耗充电器方案上的应用

上一篇:锂电池充电器LCD电量显示驱动方案
下一篇:基于UCC3895与PIC单片机的智能充电器

推荐阅读最新更新时间:2023-10-18 15:06

MSP430待机功耗问题
最近由于项目原因使用了TI公司的MSP430F149单片机,在使用过程中遇到了有关于功耗方面的一点问题,以此文章作为记录。 问题描述:单片机进入低功耗模式4(low_power_mode_4)之后测量待机电流高达8mA。 解决方法:通过程序调试运行发现当运行了串口初始化程序后,进入低功耗之后会有较大电流,串口初始化程序如下: 串口初始化程序 继续调试发现,当屏蔽掉对于管脚端口的设置后程序运行进入低功耗后电流能够维持在ua级别,由此推断是因为进入低功耗前没有对相应管脚进行配置导致。在进入低功耗前添加管脚配置程序如下: P3SEL &= ~(BIT4 + BIT5); //管脚配置为普通IO口 P3DIR &= ~(BIT4
[单片机]
MSP430<font color='red'>待机功耗</font>问题
【教学视频】信号发生器无法驱动负载怎么办?
任意波形发生器是最常见的一种信号源,虽然波形发生器在波形生成上极具优势,但是一般的波形发生器都没有什么驱动能力。 有些测试除了需要信号发生器提供输出电压外,还需要功率输出,这时就需要功率放大器来配合使用。
[测试测量]
XP Power推出高性价比、高功率密度的DC-DC转换
XP Power正式宣布推出两款超宽输入范围、高性价比、高功率密度的DC-DC转换器,适用于铁路牵引和铁路车辆。 这两款DC-DC转换器的超宽输入范围可为客户降低库存要求,也可满足超宽的应用范围。额定功率20W的RDE20系列具有4:1输入范围, 13-70VDC输入版本提供24、37.5和48VDC额定输入, 42-176VDC版本提供72&110VDC额定输入。额定功率为25W的RDF25系列具有超宽的10:1输入范围,16-160VDC版本提供24VDC至110VDC的所有额定输入。 这两款产品符合EN50155和EN50121-3-2安规认证,符合铁路应用需要满足的所有最重要的安规标准和电磁兼容要求。此外,作
[电源管理]
XP Power推出高性价比、高<font color='red'>功率</font>密度的DC-DC<font color='red'>转换</font>器
如何通过配置负载点转换器 (POL) 提供负电压或隔离输出电压
在温度高达 210 摄氏度或需要耐辐射解决方案的恶劣环境应用中,集成型降压解决方案可充分满足系统需求。有许多应用需要负输出电压或诸如 +12V 或 +15V 等隔离输出电压为 MOSFET 栅极驱动器电路供电或者为运算放大器实现偏置。我们将在本文中探讨如何使用 TPS50x01 配置降压转换器,提供负输出电压。此外,我们还将讨论如何通过提供高于输入压的电压来满足应用需求。 TPS50601-SP  和  TPS50301-HT  都是专为耐辐射、地质、重工业以及油气应用等恶劣环境开发的集成型同步降压转换器解决方案。TPS50x01 是具有集成型高侧及低侧 MOSFET 的电流模式控制器件。IC 的大型焊盘部分可通过检查热管理,让
[电源管理]
如何通过配置负载点<font color='red'>转换</font>器 (POL) 提供负电压或隔离<font color='red'>输出电压</font>
优化稳压器的输出电压精度
     虽然输出电压不断下降而稳压要求正变得越来越高,但是您的任务可能并非像其表面上看起来那么困难。即使必须要使用1%或更大的容差电阻来进行设计,但您仍然可以得到非常精确的输出电压。   图1显示了一款典型的电源调节电路。输出被分流降压,并与参考电压进行比较。差异被放大,并用于驱动调节环路。乍一看,您可能会认为这一方案仅限于两倍电阻容差精度。幸运的是,实际并非如此;精度还是输出电压与参考电压之比的强函数。 图1.输出精度是分压器比、基准精度和误差放大器补偿的函数   三种不同的情况可以非常容易地说明这一比率。第一种情况是假设一点分压也没有,换句话就是说输出电压等于参考电压。很明显,这种情况下没有电阻分压误差。第二
[电源管理]
优化稳压器的<font color='red'>输出电压</font>精度
ROHM开发出输出电压更稳定且非常适用于冗余电源的小型一次侧LDO
ROHM开发出输出电压更稳定且非常适用于冗余电源的小型一次侧LDO 即使车载电源系统出现异常,也可确保核心功能继续工作 全球知名半导体制造商ROHM(总部位于日本京都市)开发出支持高达45V的额定电压、50mA输出电流的一次侧*1LDO稳压器*2(以下简称“LDO”)“BD7xxL05G-C系列”(BD725L05G-C、BD730L05G-C、BD733L05G-C、BD750L05G-C),该系列产品非常适用于各种冗余电源*3,用于车载应用中,可提高车载电源系统的可靠性。 近年来,随着ADAS(高级驾驶辅助系统)等的发展,要求为这些应用供电的车载电源系统具有更高的可靠性。因此,越来越多的车载电源系统都开始
[电源管理]
ROHM开发出<font color='red'>输出电压</font>更稳定且非常适用于冗余电源的小型一次侧LDO
MSP430F2616开发笔记题外话之LM358做电压跟随器的输出电压
由于DAC的输出可能会经过电阻分压、经过加减法器运算之类的,所以很多时候在它的后级会加上电压跟随器,以增加输入阻抗、减小输出阻抗;使用ADC时,也同样经常会使用它来处理信号。 在使用LM358搭建电压跟随器时,我遇到过输入电压接近零点而输出电压保持在0.6V以上的情况,从网上了解到这并不是个别现象,而是经常出现,有人给出的解决方法是使用正负电源供电,或者加下拉电阻。但是LM358的技术手册描述,它的输出电压摆幅在0V附近时并没有问题(技术手册上提供的最低输出电压典型值为5mV),同样有人做过实验,确实表现非常好。那这个0.6V到底从哪里来呢?难道买到的LM358是假货吗? 为了找出问题所在,首先根据下面的原理图,使用实验板
[单片机]
MSP430F2616开发笔记题外话之LM358做电压跟随器的<font color='red'>输出电压</font>
Intersil高整合功率转换模块ISL8201M
Intersil推出高整合度功率转换模块ISL8201M。该产品是高效率、低噪声、高整合度的DC/DC电源解决方案,在热增强的QFN封装内整合了PWM控制器、MOSFET驱动器、功率MOSFET、电感器,以及最佳化的补偿电路。 ISL8201M能简化使电源设计过程,只需输入和输出电容器,以及一个电阻器,即可实现一个完整的电源方案。在电信、数据通讯、电子数据处理、无线网络系统、医疗仪器,以及基于负载点应用的分布式总线架构等应用中,ISL8201M小巧的尺寸可大幅节省电路板面积,同时高整合度又降低了采购和仓储成本。另外,板上的输入滤波器支持超低噪声的作业,因而减少EMI。 ISL8201M的QFN封装能够
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved