一种低功耗宽频带LDO线性稳压电路设计

最新更新时间:2011-07-31来源: chinaaet关键字:稳压电路  线性  LDO  宽频 手机看文章 扫描二维码
随时随地手机看文章

  1 引言

  随着集成电路规模的发展, 电子设备的体积、重量和功耗越来越小, 这对电源电路的集成化、小型化及电源管理性能提出了越来越高的要求。而随着片上系统( SOC) 的不断发展, 单片集成的LDO 线性稳压器的应用也越来越广泛[1]。对于片内的LDO,最担心的是寄生电容过大引起不稳定,论文针对片内应用而设计的这款LDO,能保证在uF 级别的寄生电容范围内都可以正常工作,毕竟寄生电容再大也不至于是μF 级别的。功耗是LDO 线性稳压器的重要指标之一,一般的LDO 功耗都在几十μA 以上,例如文献[2]中电路的静态电流为38μA,文献[3]中静态功耗高达65μA, 而本文的静态功耗做到10μA 左右,不仅功耗低,本文中第二级靠电阻的电流关系提供了一个小增益级,并且提高了整个LDO的带宽。

 2 LDO 电路组成原理与关键模块设计

  2.1 电路基本工作原理

  图1 是LDO 线性稳压器的结构框图, 由下面几个部分组成:基准电压源(Vref)、误差放大器、同相放大器、反馈电阻网络、调整管等。其中基准电压源输出参考电压Vref, 要求它精度高, 温漂小。误差放大器将输出反馈回来的电压与基准电压Vref 进行比较, 并放大其差值,其经过同相放大器来控制调整功率管的状态, 因而使输出稳定。在这里C1 是前馈电容,可以提高负载调整率,并增加了一个左零点补偿,Cff提供一个零点补偿。第一级放大器就是一个差分对,和大多数误差放大器结构一样,第二级为同相放大级,靠电阻的电流关系提供一个小增益级,并控制带宽。相对于普通结构而言的,如果靠运放直接驱动功率管,那带宽就被功率管的寄生电容和运放输出阻抗和增益决定了,而这个结构的增益和输出阻抗,相比运放小很多,带宽自然就提高很多。表1 为该LDO 的主要设计参数和性能指标。

图1 LDO 线性稳压器结构示意图

表1 LDO 的设计参数和性能指标

  2.2 电路组成与设计

  (1)调整管结构设计:MOS 型线性稳压器的调整管是电压驱动的, 能大大降低器件消耗的静态电流, 而且其较小的导通阻抗使得漏失电压也比较低,从而提高了电源的转换效率[4]。根据调整管的平方率关系式以及设计指标Vdropout ≈ 200mV,可以计算出调整管的宽长比, 结合调整管的栅极寄生电容以及工艺的要求,在重载情况下考虑调整管需工作在线性区, 将调整管的宽长设计为:W=6000μm,L=0.5μm。

  (2)电阻R1 与R2 选择:输出电压由反馈网络决定,根据VOUT =VREF[(R1+R2)/R1],当选定的VREF=1.25V,R1 = 625KΩ,那么R2 = 625KΩ。

 2.3 误差放大器(EA)设计

 为保证低功耗的前提下I1设为5μA,I2设为3μA,在小的偏置电流以及较大的负载的情况下为了保证能得到不小于25dB 的增益,把RF设计为500K。由于同相放大器的增益随负载的增加而减小,在设计中需要适当增加偏置电流I1 和增加RF的值[7]。而带宽受M2 的跨导和调整管的W/L 的影响,需要增加M2 的W/L 以及偏置电流I2。图中M1 的宽长比为4/1, 这里取W1=30μm,L1=3μm,M2 的宽长比为110/1,取W2=110μm,L2=1μm。仿真结果如图5 所示。

图5 同相放大器的增益

  3 LDO 整体仿真结果与讨论

  我们基于HHNEC 0.35um BCD 工艺下,采用cadence 和Hspice 仿真软件对整体电路做仿真,如图6 所示为LDO 环路稳定性仿真曲线。

(a)负载电流为50mA 仿真曲线

(b)负载电流为0 时仿真曲线

图6 LDO 环路稳定性仿真曲线

  (a) 图为负载电流为50mA 时,LDO 环路增益为50dB、单位增益带宽为470KHZ、相位裕度为74degree。(b)图为负载电流为0 时,LDO 环路增益为63dB、单位增益带宽为1KHZ、相位裕度为87degree。图7 给出了该LDO 的线性调整率曲线,仿真条件为C L=1μF, 由仿真曲线可以看出该LDO 的线性调整率为:

图7 CL=1μF 线性调整率曲线

  图8 给出了该LDO 的负载调整率曲线,仿真条件为CL=1μF, 由仿真曲线可以看出该LDO 的负载调整率为:

图8 CL=1μF 负载调整率曲线

  图9 给出了该LDO 的电源抑制比仿真曲线,仿真条件为IL=1mA。从该曲线可以看出,该LDO 的PSRR 在1KHZ时为- 60dB。

图9 电源抑制比仿真曲线

  4 结论

  本文提出的这款LDO 线性稳压器,能保证在μF 级别的寄生电容范围内都可以正常工作。

  该LDO 的静态电流低至10μA,文中同相放大器的引入,提高了整个LDO 的带宽。从仿真结果可以看出,在负载电流Iload=50mA 时,带宽为470KHz。

  该LDO 其它各方面指标都满足设计要求。

  误差放大器电路原理图如图2 所示。对该EA部分功耗(3μA)以及低的失调电压的要求,根据σ2(VT)= A2VT / WL+S2VTD2以及MOS 管的平方率关系[5],设计出各MOS 管的尺寸,M1 和M2 的宽长比为41/2, M3 和M4 的宽长比为4/1,M5 和M6 的宽长比为2/1, 我们这里取W1=W2=82μm,L1=L2=4μm;W3=W4=12μm,L3=L4=3μm;W5=W6=8μm,L5=L6=4μm。实际上,在EA 这部分为了让这一级增益Ger 不小于10dB 且保证有足够的相位裕度,将反馈电容CFF设计为20.8pF,把C1 设计为1.5pF。该部分的仿真结果如图3 所示。结果表明,该设计在保证稳定的前提下Ger 为11dB[6]。
关键字:稳压电路  线性  LDO  宽频 编辑:探路者 引用地址:一种低功耗宽频带LDO线性稳压电路设计

上一篇:Linear无光耦合器的 100V 隔离型单片反激式稳压器
下一篇:单片式稳压器LT3692A的设计要点

推荐阅读最新更新时间:2023-10-18 15:31

新型线性稳压器解决了老问题
稳压器 可调节电压,但还能做很多其他的事情。自 1976 年三端浮动稳压器问世以来,线性稳压器的架构几乎就没有改变过。稳压器要么是一种浮动架构 (LT317),要么就是一种具有从输出至放大器之反馈的放大器环路。这两种架构在通用性、调节性能和准确度方面存在局限性。 反馈电阻器负责设定输出电压并对进入放大器的反馈信号进行衰减。因此,输出端上的稳压是输出电压的一个百分数,于是,虽然百分数值上可能是相同,但较高输出电压的稳压 (单位:V) 却较差。而且,稳压器的带宽也会随着电压的变化而改变。由于环路增益下降,因此在较高的输出电压条件下带宽也将减小。当输出电压升高时,这会减缓瞬态响应速度并使纹波性能变差。 老式稳压器固定了电流限值,没有调
[电源管理]
新型<font color='red'>线性</font>稳压器解决了老问题
MAX15029/MAX15030:低压差线性稳压器
     MAX15029/MAX15030低压差线性稳压器可在低至1.425V的输入电压下工作,提供高达500mA的连续输出电流,压差典型值仅为40mV。输出电压可以在0.5V至VIN范围内进行调节,并且在整个负载和输入电压变化范围以及-40°C至+125°C温度范围内保持±2%的精度。MAX15030具有来自常备电源的3V至5.5V BIAS输入。器件处于关断状态时,BIAS输入电流降至2 A以下。   稳压器使用小型、1µF陶瓷输入电容和2.2µF陶瓷输出电容,输出电流可达500mA。高带宽提供了极佳的瞬态响应特性。仅使用一个2.2µF的陶瓷输出电容时,可将由100mA至500mA负载电流跳变引起的输出电压变化限制在10
[电源管理]
MAX15029/MAX15030:低压差<font color='red'>线性</font>稳压器
技术精华之线性LED驱动IC的设计与优秀推荐
线性 LED 驱动IC您了解多少?提起线性功率IC,大家都认为功耗太大,不好用,比较落后的技术了。郑重的回答你,你错了! 三端稳压器78**系列广泛的应用,没有哪一款开关型DC-DC型号的IC用量有可能超过它,这是为什么?大家可能说是:价格低、稳定可靠、技术成熟;那DC-DC呢?效率高。你只说对了一半,线性功率IC不但有前面几项优点,更一样效率高也可以做到体积小巧。 同意上述观点的朋友赶紧跟帖赞同,不然看完了我的帖子后你就有可能改变这个观! 台湾有家公司叫点晶科技,成立20多年以来,先后推出LED驱动应用IC上百款,基本全都是线性恒流驱动。你想知道这是为什么吗? 未来的日子里我将找几款IC对比分析,线性功率器件IC设计要注意哪些要
[电源管理]
技术精华之<font color='red'>线性</font>LED驱动IC的设计与优秀推荐
直流电动机的非线性控制研究
 电动机把电能转换成机械能,拖动物体运动。使用者关心的是电动机是否能按照给定的速度稳定运行。影响电动机转速的因素很多,现以他励直流电动机为例,由稳态时的角速度公式可知,如果某个参数变了,为了得到不变的角速度,那么其他参数肯定要有相应的变化。电动机从一个稳态到另一个稳态的过渡过程中既有机械动态也有电磁动态过渡过程,具有非线性特性;实际上,电磁时间常数远小于机电时间常数,若忽略电磁过渡过程,就是线性系统,目前电动机的控制基本上都是按线性系统来处理的。     随着非线性控制理论发展和应用的成熟,直接按非线性系统来控制直流电动机,一定会获得更优的性能。 1 系统方程 1.1 状态方程     如图1所示,它励直流电动机励磁回路方程为:
[电源管理]
直流电动机的非<font color='red'>线性</font>控制研究
奥地利微电子推出针对变化负载电流的“Eco”LDO
      奥地利微电子公司(SWX 股票代码:AMS)扩展旗下低压差稳压器产品线,推出“Eco”LDO AS1367,在稳压输出时可提供高达150mA的电流。       奥地利微电子消费及通信市场总监Bruce Ulrich表示:“AS1367 LDO为许多用户遇到的可变占空比负载问题提供了一个解决方案。在便携式电池供电设备中,由于应用会间歇开关,负载电流的变化可能非常剧烈。奥地利微电子的AS1367 LDO可自适应重负载或轻负载情况,并保持出色的整体性能。AS1367每千片订货的单价为0.35美元,是我们“性能卓越且价格适中”LDO产品线的优秀新品。”       AS1367稳压器是一款高精密、低噪声、高速、
[电源管理]
奥地利微电子推出针对变化负载电流的“Eco”<font color='red'>LDO</font>
利用高线性度LNA模块减少GPS设备中的干扰
全球定位系统(GPS)是由运行在6个地球轨道上的24颗卫星组成的导航系统,无论身在何处 GPS 都可以帮助用户精确地确定所处的位置。GPS系统最初用在军事上,20世纪80年代开始进入民用领域。自此以后,GPS作为一种求生和导航工具开始变得流行起来。制造商已将GPS接收器集成进各种便携式电子产品中,这些产品通常具有诸如汽车或无线设备的移动连接能力。   手机是集成GPS功能的理想产品。将 GPS接收器 集成到手机可以实现同步GPS(S-GPS)应用,此时的GPS接收器是与不同频段的无线通信系统(如PCS和蜂窝网络)一起使用的。消费者希望具有GPS功能的手机能够可靠地接收和放大卫星发射的信号,因为接收出错将会导致位置信息的错误。遗
[应用]
放大线路交流信号的线性分析
放大线路是非线性电路。因为构成其电路的电子元件是非线性元件。要用他对信号进行不失真地放大,必须设置适当的工作点,使电子器件工作在近似线性区域,这就决定了放大器的分析包括直流分析和交流分析。而非线性器件对直流信号和交流信号所呈现的性能不同,这就是放大器分析与一般线性电路分析的不同之处,当对放大器进行小信号分析时,其电路模型又是线性的。但电子器件的非线性对于放大器的分析却一直起着重要的作用。   关键词:放大线路;电子器件;线性;非线性   《电子技术基础》是电子类专业一门重要的技术基础课。模拟电路是学生难学、教师难教的一门课程。放大器是模拟电路的入门基础,也是《电子技术基础》的重点和难点,只有解决了这个难题,才能进入电子
[工业控制]
卓芯微电子推出双通道LDO
卓芯微电子(Innova-Semi)推出了双通道的低压差线形调整器。RCR3412SL每一路都具有超过250mA的带载能力,很低的压差,高达62dB的纹波抑制比,并有各自的CE控制端。内置过温保护,以及短路回缩功能。 该器件主要应用于手机、MP3、MP4、PMP等产品。典型应用电路如下: RCR3412SL性能概要:
[电源管理]
卓芯微电子推出双通道<font color='red'>LDO</font>
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved