一种无回馈交流变频主电路的分析

最新更新时间:2011-08-21来源: chinaaet关键字:变频电路  变频器  无回馈  逆变桥 手机看文章 扫描二维码
随时随地手机看文章

  现行的交流变频技术,大多采用电压型的PMW控制方式,并且利用并联于三相逆变桥的反馈整流桥进行无功电流的回馈。这种同时进行频与变压的控制而保持气隙磁通恒定的变流方法,不管是用并联或串联电容器进行无功补偿,都会因容性无功功率与频率成正比而无法在较大的频率调节范围内实现充分的无功补偿。异步电动机等感性负载形成的无功电流不仅要增大电源及变配电装置的容量,还必然会在无功能量往复的传递中造成较大的电能浪费。设法克服定子漏感的降压与激磁感抗造成的电流相位滞后及变频中无功电流回馈的问题,对进一步的节能具有较大的实用价值。

1 主回路的接线及其控制方式

  采用图1 接线方式构成无回馈交流变频主电路,其中:采用3 只晶闸管与3 只整流管构成三相半控整流桥,或用6只晶闸管构成三相全控整流桥;在三个交流输入端串联L1、L圆和L3 3 只电抗器进行电容桥的限流与滤波;采用C11 与C41、C31 与C61、C51 与C21 三对同容量的电力电容器构成副电容桥,并用T7、T8和T9 3只双向晶闸管与主电容桥联接;采用C1与C4、C3与C6、C5与C2 3 对同容量的电力电容器构成主电容桥,3 个桥路的中点与异步电动机三相定子绕组的3 个末端相联;采用普通晶闸管T1 与T4、T3 与T6、T5 与T2 分别串联成三相逆变桥,3个桥路的中点与三相定子绕组的3个首端相联。主电路的特点是:三相逆变桥与三相主电容桥共同构成三相绕组的变流主电路,并在某一晶闸管导通的瞬间构成一个电容器放电与另一电容器充电的双回路;主、副电容桥用3 只双向晶闸管分别联接其交流端,在触发相位角的移相变化中,可将副电容桥的电容器逐渐并入主电容桥,使总的电容量在50%~100%范围内变化;主副电容器以两两串联形式对直流回路进行电压滤波,还用桥路中点与电机绕组联成回路而进行电流谐振与换流;在逆变桥晶闸管上分别并联的电阻与电容器串联的阻容保护电路,不仅可延缓电压突变而实现对晶闸管的保护,并且还在其反向通流中形成反向电压而保证晶闸管的可靠关断。

  逆变桥6 只晶闸管的控制方式是:按照晶闸管T1—T2—T3—T4—T5—T6的顺序依次触发导通循环进行控制,其频率在5耀60 Hz范围内平滑调节。

  在3 只双向晶闸管T7、T8 和T9 的触发相角前移或后移控制时,总的电容量相应增大或减少。三相半控或全控整流桥的触发相位角同于常规的控制方式,配合电容桥实现对输出脉波电流幅值的调节。

2 逆变半桥与电容桥组合变流原理

  若要使电感线圈的电流快速上升并使其相位前移,有效的办法是动态地施加尖脉冲电压并使容抗值在工频范围接近于感抗值。采用逆变半桥与电容桥组合的变流电路,可在同一桥路的两只晶闸管的交替通流中形成某一电容器放电而另一电容器充电的双重作用于感性绕组的通路。例如在晶闸管T1 导通使绕组Wa 正向通流期间,C1 上储存的电荷经由T1对绕组Wa进行放电,同时经由绕组Wa 对电容器C4 进行充电;在晶闸管T4 触发导通时,C4 上的电压对绕组Wa 形成反向的放电回路,并同时对C1进行充电。这种组合变流方式,利用感性绕组在电流脉波经过幅值后其感应电势变为负值的特点,使充电的电容器电压值从负变正并上升至超过直流回路的电压值;充电至1.3耀2 倍直流电压值的电容器,在切换成放电通路时便以尖脉冲电压对感性绕组进行快速通流,放电电流的第一个半波电流波形近似于正弦波;在两只电容器组合作用的正弦半波电流过零后,通流的晶闸管自然关断。双电容组合通流过程使电容器分别承受直流叠加交流的电压量,也使感性负载的电流在换流时仅需电源提供1/2左右的电流值。

  副电容桥及3 只双向晶闸管构成电容量的调节回路,在双向晶闸管T7、T8和T9 的触发相位角前移时,相当于将较大的电容器容量并入了主电容桥,反之在触发相位角后移时,并入的电容量相对减少,直至完全断开。本电路亦可用1耀4 组固态继电器对分为1耀4 组的副电容桥进行分级控制而平衡负载电流。

  在逆变桥6 只晶闸管的依次触发导通中,其正向与反向并间隔一定电角度的脉波电流合成为交流电流,并使得定子绕组产生对应的旋转磁势。

  本电路采用脉波不变而使间隔改变的调速办法,即在其输出向低频变化时,仅是脉波电流之间的距离相应增大,而电流幅值及脉波宽度的变化较小。在低频运转阶段,正弦半波电流波形之间的宽度要比半波自身的宽度大许多,而旋转电势仍是正、负半波紧连的正弦波,形成了与常规变频方法的不同之处。这种快速升降的脉波电流波形,一方面可减少定子漏抗的降压作用,另一方面在其相位的前移中可避免无功电流回馈而造成的一系列的损耗。

3 双绕组的无回馈逆变与电磁振动控制

  在将三相定子绕组分解成末端相联的双绕组时,其6 个绕组的首端对应联接于桥路中点分别串联1 只反向整流管的三相逆变桥的6个输出端上,如图2 所示。

  采用双绕组做法,尤其是定子绕组采用单层结构并将同一相两绕组间隔360毅槽电势相角排布时,利用两绕组之间的磁耦合相对减弱的特点,并结合两个绕组首端联接的整流管就可实现无功电流的自回馈。例如在T1导通而对绕组Wa1进行正半波的通流期间,当脉波电流从幅值下降而使电势变为负值时,此负向电势对绕组Wa2与整流管D7 构成电感的放电回路,使绕组Wa1 中储存的电感能量自行转移于绕组Wa2;Wa2在脉波电流下降时,对绕组Wa1及整流管D7进行电感放电而形成感性无功能量的转移过程。这种相互间释放或吸收电感能量的作用是以相互间的磁耦合关系较弱为前提,尤其是控制成组的电磁铁而进行排移性的振动成型时,自回馈效应更为明显。

  在双绕组的无回馈变频控制扩展成6耀18 个桥路的逆变桥与主电容桥及副电容桥时,其12耀36 个输出端联接的12耀36 只电磁线圈,便可在依次通流的12耀36 节拍的控制中,使排列成矩阵的电磁铁及弹簧形成排移振动过程。这种由6耀18 对电磁线圈构成的双绕组电路结构,其无功电流经由整流管的自回馈更具有明显的节能效果,并可在LC 的谐振中形成人造石英石薄板振动成型工艺中有较好的致密效果。

0 引言

  现行的交流变频技术,大多采用电压型的PMW控制方式,并且利用并联于三相逆变桥的反馈整流桥进行无功电流的回馈。这种同时进行频与变压的控制而保持气隙磁通恒定的变流方法,不管是用并联或串联电容器进行无功补偿,都会因容性无功功率与频率成正比而无法在较大的频率调节范围内实现充分的无功补偿。异步电动机等感性负载形成的无功电流不仅要增大电源及变配电装置的容量,还必然会在无功能量往复的传递中造成较大的电能浪费。设法克服定子漏感的降压与激磁感抗造成的电流相位滞后及变频中无功电流回馈的问题,对进一步的节能具有较大的实用价值。

1 主回路的接线及其控制方式

  采用图1 接线方式构成无回馈交流变频主电路,其中:采用3 只晶闸管与3 只整流管构成三相半控整流桥,或用6只晶闸管构成三相全控整流桥;在三个交流输入端串联L1、L圆和L3 3 只电抗器进行电容桥的限流与滤波;采用C11 与C41、C31 与C61、C51 与C21 三对同容量的电力电容器构成副电容桥,并用T7、T8和T9 3只双向晶闸管与主电容桥联接;采用C1与C4、C3与C6、C5与C2 3 对同容量的电力电容器构成主电容桥,3 个桥路的中点与异步电动机三相定子绕组的3 个末端相联;采用普通晶闸管T1 与T4、T3 与T6、T5 与T2 分别串联成三相逆变桥,3个桥路的中点与三相定子绕组的3个首端相联。主电路的特点是:三相逆变桥与三相主电容桥共同构成三相绕组的变流主电路,并在某一晶闸管导通的瞬间构成一个电容器放电与另一电容器充电的双回路;主、副电容桥用3 只双向晶闸管分别联接其交流端,在触发相位角的移相变化中,可将副电容桥的电容器逐渐并入主电容桥,使总的电容量在50%~100%范围内变化;主副电容器以两两串联形式对直流回路进行电压滤波,还用桥路中点与电机绕组联成回路而进行电流谐振与换流;在逆变桥晶闸管上分别并联的电阻与电容器串联的阻容保护电路,不仅可延缓电压突变而实现对晶闸管的保护,并且还在其反向通流中形成反向电压而保证晶闸管的可靠关断。

  逆变桥6 只晶闸管的控制方式是:按照晶闸管T1—T2—T3—T4—T5—T6的顺序依次触发导通循环进行控制,其频率在5耀60 Hz范围内平滑调节。

  在3 只双向晶闸管T7、T8 和T9 的触发相角前移或后移控制时,总的电容量相应增大或减少。三相半控或全控整流桥的触发相位角同于常规的控制方式,配合电容桥实现对输出脉波电流幅值的调节。

2 逆变半桥与电容桥组合变流原理

  若要使电感线圈的电流快速上升并使其相位前移,有效的办法是动态地施加尖脉冲电压并使容抗值在工频范围接近于感抗值。采用逆变半桥与电容桥组合的变流电路,可在同一桥路的两只晶闸管的交替通流中形成某一电容器放电而另一电容器充电的双重作用于感性绕组的通路。例如在晶闸管T1 导通使绕组Wa 正向通流期间,C1 上储存的电荷经由T1对绕组Wa进行放电,同时经由绕组Wa 对电容器C4 进行充电;在晶闸管T4 触发导通时,C4 上的电压对绕组Wa 形成反向的放电回路,并同时对C1进行充电。这种组合变流方式,利用感性绕组在电流脉波经过幅值后其感应电势变为负值的特点,使充电的电容器电压值从负变正并上升至超过直流回路的电压值;充电至1.3耀2 倍直流电压值的电容器,在切换成放电通路时便以尖脉冲电压对感性绕组进行快速通流,放电电流的第一个半波电流波形近似于正弦波;在两只电容器组合作用的正弦半波电流过零后,通流的晶闸管自然关断。双电容组合通流过程使电容器分别承受直流叠加交流的电压量,也使感性负载的电流在换流时仅需电源提供1/2左右的电流值。

  副电容桥及3 只双向晶闸管构成电容量的调节回路,在双向晶闸管T7、T8和T9 的触发相位角前移时,相当于将较大的电容器容量并入了主电容桥,反之在触发相位角后移时,并入的电容量相对减少,直至完全断开。本电路亦可用1耀4 组固态继电器对分为1耀4 组的副电容桥进行分级控制而平衡负载电流。

  在逆变桥6 只晶闸管的依次触发导通中,其正向与反向并间隔一定电角度的脉波电流合成为交流电流,并使得定子绕组产生对应的旋转磁势。

  本电路采用脉波不变而使间隔改变的调速办法,即在其输出向低频变化时,仅是脉波电流之间的距离相应增大,而电流幅值及脉波宽度的变化较小。在低频运转阶段,正弦半波电流波形之间的宽度要比半波自身的宽度大许多,而旋转电势仍是正、负半波紧连的正弦波,形成了与常规变频方法的不同之处。这种快速升降的脉波电流波形,一方面可减少定子漏抗的降压作用,另一方面在其相位的前移中可避免无功电流回馈而造成的一系列的损耗。

3 双绕组的无回馈逆变与电磁振动控制

  在将三相定子绕组分解成末端相联的双绕组时,其6 个绕组的首端对应联接于桥路中点分别串联1 只反向整流管的三相逆变桥的6个输出端上,如图2 所示。

  采用双绕组做法,尤其是定子绕组采用单层结构并将同一相两绕组间隔360毅槽电势相角排布时,利用两绕组之间的磁耦合相对减弱的特点,并结合两个绕组首端联接的整流管就可实现无功电流的自回馈。例如在T1导通而对绕组Wa1进行正半波的通流期间,当脉波电流从幅值下降而使电势变为负值时,此负向电势对绕组Wa2与整流管D7 构成电感的放电回路,使绕组Wa1 中储存的电感能量自行转移于绕组Wa2;Wa2在脉波电流下降时,对绕组Wa1及整流管D7进行电感放电而形成感性无功能量的转移过程。这种相互间释放或吸收电感能量的作用是以相互间的磁耦合关系较弱为前提,尤其是控制成组的电磁铁而进行排移性的振动成型时,自回馈效应更为明显。

  在双绕组的无回馈变频控制扩展成6耀18 个桥路的逆变桥与主电容桥及副电容桥时,其12耀36 个输出端联接的12耀36 只电磁线圈,便可在依次通流的12耀36 节拍的控制中,使排列成矩阵的电磁铁及弹簧形成排移振动过程。这种由6耀18 对电磁线圈构成的双绕组电路结构,其无功电流经由整流管的自回馈更具有明显的节能效果,并可在LC 的谐振中形成人造石英石薄板振动成型工艺中有较好的致密效果。

4 换流回路参数的计算

  以图2 的三相逆变桥控制6 个电磁线圈为例初步计算主电路的参数,具体对晶闸管T1控制电磁铁线圈Wa1,并同主电容桥的C1与C4构成的回路进行计算。由于C1和C4构成的两个回路的初始电压值近于相同,因此可将Wa1分解成并联的两路,设电阻与电感分别为R 与L。简化的等值电路如图3所示。根据电工基础的电容充、放原理,并用拉氏变换与反变换,可推导出两个回路的电流方程为

        

  在电磁线圈中实际流过的电流是ic1 与ic4 的合成值,其第一个脉波电流近似为正弦波。在计算异步电动机的换流参数时,要考虑旋转电势影响因素,电容器容量的选择要兼顾电流幅值与谐振角频率两方面的因素。

5 结语

  无回馈逆变形成的双电容谐振通流方式,不仅实现了普通晶闸管的关断,还在突发性的电容电压作用中实现了感性绕组的快速通流,从而在电流相位的前移中产生无功功率充分补偿的节电效应。调节副电容桥的容量是保持转速及电流稳定的主导调节方式,并在维持电流幅值及脉波宽度近于恒定的调节中,以增大脉波之间的宽度方式而降低频率。本电路易于制造高电压及大容量的调速装置,也易于变换成6相或18相而扩展应用于其他设备的控制。

关键字:变频电路  变频器  无回馈  逆变桥 编辑:探路者 引用地址:一种无回馈交流变频主电路的分析

上一篇:光伏逆变器的配置选型
下一篇:基于8098单片机的SPWM变频调速系统研究

推荐阅读最新更新时间:2023-10-18 15:36

西门子6SE70变频器元器件测量分析
1.整流部分 电路板的保养;要是做一些除尘工作,必要时给板子刷三防漆(对于一些使用环境湿度 大粉尘大可以保护电路板, 但刷三防漆需要注意不能太厚,否则影响散热) ; 功率单元(晶闸管) IR绝缘电阻的测量是很有必要的,如果IR特别低就需要注意了必要时将其更换;晶闸管单元上的 阻容元件也需要测量,因为阻容元件是起保护作用的,它有问题也会导致晶闸管单元损坏; 风扇的检查也很重要;主要检查启动电容是否漏液、容值是否较低;风机阻值不应存在接地或短路现象; 运行电流测量(用钳形电流表测量)并且风扇运行无异响; 2.逆变柜部分 IGBT测量 1 )正反压降测量 反向压降测量万用表打到二极管档,红表笔接E ,黑表笔接C,正常压降在0.2-0
[测试测量]
变频器在破碎机上应用及工作原理
立轴式破碎机即立式冲击式破碎机,俗称制砂机。是专家多年研制矿山机械设备智慧和正确决策的结晶,是一种具有国际先进水平的高能低耗设备,其性能在各种矿石细破设备中起着不可替代的作用,是目前行之有效、实用可靠的碎石机器。本产品广泛应用于各种矿石、水泥、耐火材料、铝凡土熟料、金刚砂、玻璃原料、机制建筑砂、石料及各种冶金矿渣等多种行业。 结构 hx型立式冲击破碎机由进料斗、分料器、涡动破碎腔、叶轮体、主轴总成、底座、传动装置及电机等七部分组成。 1.进料斗 进料斗的结构为一倒立的棱台体(或圆筒体),进料口设置耐磨环,从给料设备的来料经给料斗进入破碎机。 2.分料器 分料器安装在涡动破碎腔的上部,分料器的作用就是将从给料斗来料进行分
[嵌入式]
<font color='red'>变频器</font>在破碎机上应用及工作原理
变频器的PID控制原理框图_变频器的PID的作用
  变频器的PID控制原理框图和作用   (1)PI控制   PI控制是由比例控制(P)和积分控制(I)组合成的,根据偏差及时间变化产生一个执行量。PI运算是P运算和I运算之和。   (2)PD控制   PD控制是由比例控制(P)和微分控制(D)组合成的,根据改变动态特性的偏差速率产生一个执行量。PD运算是P运算和D运算之和。   (3)PID控制   利用PI控制和PD控制的优点组合成的控制。PID运算是P、I和D三个运算的总和。   (4)负作用   当偏差x(x=设定值-反馈量)为正时,增加执行量(输出频率),如果偏差为负,则减小执行量。PID的负作用如图6-5所示。   (5)正作用   当偏差x(x=设定
[嵌入式]
<font color='red'>变频器</font>的PID控制原理框图_<font color='red'>变频器</font>的PID的作用
变频器的应用实例(二)
一、恒流量供液系统(变频器自带PID控制器) 如图1-1所示为变频器流量PID调节控制系统。传感器是4~20mA输出的2线式流量传感器,传感器的电源是外供电+24V。流量传感器测量流量信号,经过变频器的A/D(模/数)转换后,经过PID运算,输出一个电动机运行的频率,通常是当泵的流量低于设定值时,电动机升速,而当泵的流量高于设定值时,电动机减速。 变频器流量PID调节控制系统 与PID有关的参数说明见表1-2。 PID相关参数说明 二、张力控制(变频器自带PID控制器) 张力控制在工业控制中较为常见,如图2-1所示为变频器薄板张力PID调节控制的系统。RP是电位器,给定系统所需要的张力数值,传感器测量张力数值,当张力数
[嵌入式]
<font color='red'>变频器</font>的应用实例(二)
基于DSP的数字移相器-变压变频器模块的设计与实现
  移相器简介   两个同频信号,特别是工频信号之间的移相,在电力行业的继电保护领域中是一个模拟、分析事故的重要手段。传统的移相方式都是通过三相供电用特殊变压器抽头,以跨相的方法进行移相,可统称为电工式移相。还有一种方法就是在信号衰减后,经模拟电路或数字电路实现移相,再由功放进行放大输出,一般称为电子式移相。工频信号经倍频电路(一般为3600或36000倍频)产生倍频信号送至微CPU,由其经过D/A转换器进行波形重新合成,同时微CPU改变合成波形的起始点时间,再经功放放大输出实现移相,一般称为程控式移相。   现在常用的数字移相器由以下几个功能模块组成:变频单元(变压变频器),变流单元(升流器),移相单元(数字相位表),
[嵌入式]
变频调速器与变频器的区别
变频调速器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆成交流电。 变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。 一般调速器用于直流电机的调速,也就是改变直流电机电枢电压的幅值,n(转速)=k×U(电枢电压)。其控制结构比较简单。 而变频器也是—
[嵌入式]
变频器中间直流总线供电的开关电源
图1:由变频器中间直流总线供电,不需交流电网供电 图2:正极(蓝色)和负极(绿色)对地电压:超过800V 图3:较高的直流电压产生的原因:快速IGBT以高频周期性地将正负极与地相连 图4:允许输出电流与输入电压     带有 360-900V 直流输入 、可以直接由变频器 中间直流总线 供电,这样的电源听起来非常令人心动。但是这样的电源却有着特别的设计要求。     用于控制系统和其它应用的电源传统上都是直接由单相或三相电网供电的。然而,由于越来越多的变频器以及伺服电机放大器的应用,新的供电可能出现了:由变频器的中间直流总线供电(图1)。这种供电的优点在于,可以利用运转的电机中储存的、“免费”的动能来为控制系统供电。如果这种可能
[电源管理]
<font color='red'>变频器</font>中间直流总线供电的开关电源
常用变频器接线端子集锦及接线示意图
变频器接线端子隶属于连接器的一种,种类分单孔,双孔,插口,挂钩等,从材料分,铜镀银,铜镀锌,铜,铝,铁等。它们的作用主要传递电信号或导电用,在工程中,它是站前工程为站后工程预留的接口,是站后接口工程的预埋设施。 变频器接线端子分类 变频器从功率分成:强电端子和弱电端子两大类; (1)强电端子是指高电压高功率的接线端子,通常包括RST供电电源端子、UVW电机端子、P+和N-直流母线端子、PB制动电阻端子、E散热铝片接地端子等。变频器的能量通过这些端子传递进来,处理后传递出去给电机。 (2)弱电端子包括+24V、com、+10V、GND这类弱电电源端子,FWD正转、REV反转、X1~X7多功能定义端子、RA、RB、RC内部继电器输
[嵌入式]
常用<font color='red'>变频器</font>接线端子集锦及接线示意图
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved