1 引言
多年来我对机车上的牵引变频器称为变流器总有些茫然,我们通常称交流变直流或直流变交流的设备为变流器。机车变流器分明是将50hz交流,变为0~50hz变化频率的交流,应属变频器,为何称变流器?冥冥之中似有些怨忿,又有所期待。
图1所示的和谐5型动车组牵引变流器结构组成图,其机车的外形图如图2所示。
我国高铁呈现井喷式发展。刚刚通过486.1km/h运营线路速的世界纪录,今年又将打破法国阿尔斯通570km/h的试验线路速度世界纪录,共有600多份国际合作合同正在洽谈中。我们心旷神怡!我们意气风发!
没有隐忧了么?远远不是。国际上称我们的高铁是“山寨版”;牵引变流器仍然由西门子、阿尔斯通、庞巴迪、川琦垄断;一列动车组两亿人民币,变流器就超过了一个亿;机车过分相困扰依旧;电气化铁路仍是公共电网的头号“坏孩子”。怎样去掉隐忧?怎样笑得更舒心?
图1 和谐5型动车组牵引变流器结构组成图
2 需要解决高铁面临的问题
小打小闹已无法适应高铁no.1的情怀,彻底解决高铁面临的问题要铺开多长的战线呢?又有多少问题需要我们解决呢?
(1)具有完全自主知识产权,要不同于现有的技术路线;
(2)解决机车过分相难题,实现贯通供电;
(3)不干扰公共电网,无功、负序、谐波、负荷率全面满足电网期望;
(4)系统成本和变流器成本要低于现有技术相关成本。
现有高铁供电方式是:每30km左右设一牵引变电所,三相进线,单相出线。每个变电所换一次相,即30km有一个换相点。换相点用一段绝缘体连接2个相电压,机车通过时称为过分相。此时机车要进行复杂的换相作业,机车失去供电,还要用回馈制动提供辅助设备供电。到达另一相时车速降低很多,并且要忍受一次过流冲击,操作不当时产生拉弧烧蚀现象。由于动车速度极快,几分钟就过一次分相,动车司机面临很大精神压力。由于无法贯通供电,每个变电所独自负担区间内的全部机车负荷,高峰时达四列机车,许多时间又空无一车。按照规范规定须按高峰配置容量,平均负荷率不足10%,负荷率太低是造成牵引供电系统高成本、高损耗、高排放物质的主要原因。电网侧的困难是:因单相取电,造成负序电流极大,严重影响电网质量。以及功率因数低、谐波高,高铁成为电网中最为严重的有害负荷。
图2 第二牵引动力系统电路示意图
3 工艺说明
以和谐5原型为基础,说明高铁动车现状。
和谐5共有两组相同的、可相互支援的牵引动力系统。图2所示为第二牵引动力系统电路示意图。
由图2可见受电弓pnt2接牵引变压器(红色),后经接地轮接钢轨。变压器副边经高压开关(黄色)带2~3台变流器(绿色)、图3是由图4重绘,略去制动电阻而得到的变流器框图。
4 “直流/多交流变换器”
我们多年的高压直流变换研究,应用于机车牵引成为现实。新结构采用“做减法”的方案,减去牵引变压器、四象限整流模块、支撑电容器模块和附加电容器模块;将图4中的各辅助变流器的斩波器(红色)、脉冲变压器(淡红色)、高频整流器(红黑色)移出,放至原牵引变压器位置。
如图5所示,各斩波器输入串联,斩波器输出接脉冲变压器多原边系统。多原边各匝数相等,因为同一磁路形成串联稳压电路。将牵引逆变器连接到稳定节点上,稳定了各牵引逆变器的输入电压。脉冲变压器副边整流为各辅助逆变器供电。牵引电机定子对地电压高于15kv。
5 技术特点
“直流/多交流变换器”(用于电力机车及轧钢机)由直流串联稳压电路、数个逆变器组成。直流串联稳压电路提供均压电位,并提供辅助设备电源,每段电位安置一台逆变器,拖动一台电机。另外可通过调节某台逆变器频率或输出电压改变电流帮助保持均压;亦可调节某台逆变器桥臂短暂贯通强制保持均压。虽然无四象限整流器却能更好地实现回馈制动,在直流贯通的条件下真正实现将能量利用。
图3 动力系统电路框图
图4 辅助功率模块电路原理图
图5 “直流/多交流变换器”
6 技术及经济效益分析
(1)平台变化很小,便于改造已有车辆。电机和牵引逆变模块对地耐压升高增加少许成本,低于变流器成本1%;
(2)因减少牵引变压器、四象限整流模块、支撑电容和滤波电容预计降低变流器成本50%。(逆变模块与四象限整流模块高度相似;全车降低了60%的散热功率);
(3)取消过分相;
(4)克服负序、无功、谐波、供电设备利用率低等牵引变电所痼疾,节省大量设备投资;
(5)直流贯通供电提高机车运行效率,回馈制动变得有意义;
(6)可不必规划电力专线,电网用户通过整流器与直流牵引网相连,将他们的负序、无功、谐波等负面电量注入高铁,后者可得到廉价电能;
(7)以直流牵引网为媒介将各电网联接起来,形成国家统一电网,启动电力期货交易;
(8)直接吸收风电、太阳能入网,降低其成本,解放我国新能源发展瓶颈,为国家做出更大贡献。
7 结束语
感悟!为何机车变频器称变流器?——直流变交流是它满意的方式!用直流/多交流变换器组成牵引变流器,无牵引变压器、无四象限整流器、直流贯通供电无过分相困扰、吸收交流电网中的负面电量,并以直流牵引网为媒介组成全国统一电网才是我们要实现的目标。此时它远远望着“名不正”的前辈们,可谓“一览众山小”。
上一篇:日光灯电子镇流器电路工作原理与应用详解
下一篇:基于快速传输海量存储的电能质量监测系统
推荐阅读最新更新时间:2023-10-18 15:38
- 热门资源推荐
- 热门放大器推荐
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况