用仿纹波模式实现降压转换

最新更新时间:2011-09-10来源: 互联网关键字:仿纹波模式  降压转换 手机看文章 扫描二维码
随时随地手机看文章

20年前,简单易用的集成开关稳压器的问世带来了电源管理技术革命。此前,大多数的应用都是采用线性稳压器作为电源电压以及复杂的专有开关式电源。而今,美国国家半导体著名的Simple Switcher系列DC-DC稳压器已被广泛应用在各式各样的设计中。在实现Simple Switcher电源的环路稳定性方面,有两个方法可以采用:一是固定的内部补偿,但这个方法会影响设计人员选择输出级电感器和电容器时的自由度;二是从外部作补偿,这方法虽然可带给设计人员较大的电源级元件选择灵活性,但却会使设计过程变得更为复杂。

一种全新的控制方式 – 仿纹波模式(ERM)现已应用在Simple Switcher最新的降压稳压器产品上,可以有效的简化电源设计。设计人员无需再担忧稳定性方面的问题,包括控制环路的补偿和输出纹波电压的高低。

如何驾驭滞后模式转换器

与电压模式控制和电流模式控制的架构比较,滞后模式控制无需使用补偿组件。因此,从定义上看滞后模式转换器的控制环路是不稳定的。

在这种稳压器中,输出电压会被保持在两个滞后阈值之内。当输出电压下跌至阈值以下时,一个全新的开关开启周期便会立刻被触发,直至到达了滞后比较器的高阶阈值,那周期便会终结。这个控制方式事实上非常简单,因为当中无需任何的振荡器和控制环路管理。可是,这种设计有一个缺点,就是经常需要反馈电压纹波来进行修正。假如采用很低等效串联电阻(ESR)的中等尺寸电容器(例如是陶瓷类电容器)来过滤输出电压,输出纹波虽然可以很低,但不可以很准确地达到滞后阈值。事实上,这些具备极低ESR的电容器所看到的电压纹波,会被相位位移到开关节点的真正开启和关闭时间。在一个滞后模式控制中,我们需要在开启时加大反馈电压,并在关闭时减少反馈电压。这样,我们才可从滞后比较器获得下一个周期的正确指令信号。然而,一个极低ESR的输出电容器会降低输出的纹波电压,而且掠去滞后电容器所需的纹波电压。基于上述原因,仿纹波模式(ERM)控制应运而生。



ERM(仿纹波模式)控制

仿纹波模式转换器用来感测关闭期间的感应电流,并将其中一些纹波电压以交流电压的形式注入到误差放大器的输入。这些纹波中的交流电份量带有正确的相位,能够为滞后模式控制产生出正确的开启和关闭时间。然而,滞后比较器输入中的交流电部份只会在滞后比较器等电路需要的地方才会出现,,不会出现在转换器的实际输出电压中。这个功能使得在滞后模式设计中可以采用非常低的ESR陶瓷输出电容器。市场上率先出现的具备此类功能的产品是美国国家半导体的LM3100、LM3102和LM3103 Simple Switcher稳压器。图1表示出一个设立了ERM控制的降压稳压器电路,其中的仿纹波模式的实现利用了一个位处二极管节点和误差放大器参考电压之间的电容器。

 

图1 采用仿纹波模式的降压滞后稳压器

如何量度输出电压的纹波

设计低输出电压纹波的电源时,最重要的是事前了解真正输出纹波电压的大小。当用示波器探针测量电源的输出电压时,会发现当中有两个交流电成份。其中一个成份通常被指是 “纹波”,它是由输出电容器的ESR或由电容器本身的纹波所引起的输出电压变化。纹波中的ESR成份一般都会比来自电容的较大,不过如果采用的是陶瓷输出电容器,那ESR的部份便会比电容的较少。图2表示出一个采用介质输出电容器的降压稳压器之输出纹波电压,在纹波电压方面,来自ESR的影响比来自电容的较大。图3则表示出另一个电路的输出纹波电压,该电路只采用一个ESR极低的陶瓷输出电容器。图中,大部份的纹波电压都是来自电容而非ESR,而纹波的波形像一个正弦波,而不是如图2般由ESR引起的电压转变。在两个波形图中,通道1是开关节点电压,而通道2则是在交流电模式下量度出来的输出电压。



 

图2 采用了较高ESR输出电容器后的输出纹波波形

 

图3 采用了较低ESR输出电容器后的输出纹波波形

图4表示出一个随意的测量结果,期间没有理会太多原本的测量设定。图中,我们看到在开关过渡时出现有很大的电压尖峰,远远大于真正的纹波波幅,但通常不当作是纹波电压。在这个例子中,这些尖峰的峰峰电压均超过1V,而这些尖峰其实是噪声尖峰,且大部份都已被测量设定量度出来。在功率FET的过渡期间会产生很高的频率,而在开关过渡时,电流会在几纳秒内来回从零切换,这时整片电源板都会感受到很大的di/dt变化。


 

图4 带有开关噪声的输出纹波电压

图5表示出LM3102评估板的测量结果,其中探针依附着输出电压。实现的方法是把探针尖夹在输出,并将一条5英寸长的高阻抗地线夹到电路板的接地。这条相对较长的地线会作用为一条天线,把电路板的di/dt 噪声吸收。

接着,我们进行同样的测量,只是移除用作天线的长地线,并用一条总线缆线缠绕着探针尖的接地,而且把它连接到一个与输出电压很近的接地,从而大幅地削减输出电压的尖峰。为了尽量缩减接地环路的尺寸,直接对设计上的输出电容器测量也不失为一个好主意。图6表示出把探针连到接地的测试装置,可以消除大部份的开关噪声。同样的测量技巧还应用在先前的图2和图3。

 

图5 随意测量装置的较长探针与接地连接


 

 

图6 很短的测量接地环路连接

要降低输出电压纹波图中的开关尖峰,一个简单的方法是开启示波器的带宽限制功能。在进行过以上的测量后,我们应该会对开启带宽限制很有信心。因为大部份看到的信号都是与测量有关,而不是输出电压上的真正电压尖峰。从图2到图4,示波器的带宽限制功能都被关闭。

垂手可得的低输出纹波电压

利用仿纹波模式来设计低输出电压纹波滞后模式稳压器其实非常容易。因为无需担忧环路补偿的问题,而且还可以选用陶瓷输出电容器可有效降低输出纹波电压。

当研究交流电输出电压时,最重要是将纹波和噪声区分。此外,所用的测量技术对读数的解译也非常重要。


 

关键字:仿纹波模式  降压转换 编辑:冰封 引用地址:用仿纹波模式实现降压转换

上一篇:电源模块设计分析与方略
下一篇:基于IPTV系统中的FPGA供电问题解

推荐阅读最新更新时间:2023-10-18 15:40

主电源的降压DC/DC转换器提供额外的辅助电源
许多系统除了需要 电源 " 主 电源 外还需要 低功率 电源 。一个典型例子就是当模拟前端放大器需要±5V电源时,主数字电路只需要+5V电源。由于成本、库存管理、电磁兼容等原因,采用单独的-5V转换器设计这个 低功率 电源也许并不合适,所以必须利用某些方法从 主电源 获得额外的电源轨。 执行降压型转换器IC的开关操作可以提供一个或多个隔离或非隔离的、准稳压或非稳压的输出,这样就有可能得到大小等于 主电源 输出电流10%至30%的辅助电源输出电流。 首先回顾一下降压转换器的工作波形,以确定可用来产生额外输出的电压和电流(图1)。在LX引脚上,转换电压波形的幅值范围为: (V IN(MAX) -V DIODE )
[电源管理]
主电源的<font color='red'>降压</font>DC/DC<font color='red'>转换</font>器提供额外的辅助电源
凌力尔特推出40V输入同步降压转换器LTC3646
凌力尔特公司 (Linear Technology Corporation) 推出能接受 40V 输入的同步降压型转换器 LTC3646,该器件采用 3mm x 4mm DFN-14 (或耐热增强型 MSOP16) 封装,可提供高达 1A 的连续输出电流。LTC3646 在 4V 至 40V 的输入电压范围内工作,非常适用于汽车和工业应用,因为这类应用需要有高压输入能力、高效率、高开关频率和小占板面积的解决方案。LTC3646 采用独特的受控接通时间架构,能在超过 2MHz 的开关频率情况下,将高达 36V 的输入降至 3.3V,从而可保持开关噪声处于关键频带之外 (例如: AM 无线电频段)。此外,即使占空比低于 10%,该器件
[工业控制]
降压调节器转换为智能可调光LED驱动器
凭借使用寿命长和功耗低的优势,LED有望改变整个照明行业,但它的快速采用面临的主要障碍是LED本身的成本居高不下。LED 灯具(完整电力照明设备)的成本各不相同,但LED的成本通常占据了整个灯具成本的大约25%至40%,而且预期在今后多年内仍会占据很高比例(图1)。 降低整体灯具成本的一种方法是在产品规格允许的范围内,在可能最高的直流电流下驱动LED。此电流可能远高于其“分档电流”。如果正常驱动,这样可能产生更高的流明/成本比率。 但是,这种做法需要更高电流驱动器。很多解决方案在低电流下( 500 mA)驱动LED,但很少有高电流(700 mA至4 A)的选择方案。这一现象似乎令人惊讶,因为半导体行业有大量的容
[电源管理]
将<font color='red'>降压</font>调节器<font color='red'>转换</font>为智能可调光LED驱动器
MOSFET在单通道降压转换器驱动投影仪RGB LED的应用
本应用笔记提供了一个低功耗投影仪RGB LED驱动器的参考设计。基于单芯片MAX16821构建大电流LED驱动器,能够为一组降压驱动的RGB LED提供高达10A的电流,通/断时间小于1us。某一时刻只驱动一个彩色LED,RGB按比例共用PWM周期。    LED驱动器技术指标    ● 输入电源电压:10V至15V    ● LED驱动电流:10A    ● LED正向偏压:4.5V至6V    ● LED电流上升/下降时间: 1us    ● LED电流纹波:10%峰峰值,最大值    输入    ● VIN (J4):电源输入    ● PWMR、PWMB、PWMG (J
[电源管理]
MOSFET在单通道<font color='red'>降压</font><font color='red'>转换</font>器驱动投影仪RGB LED的应用
用于便携式系统的降压-升压转换
  “更小、更便宜、更有效率。”这句话反映了对下一代便携式设备的要求。业界不断地将这些要求推向极致,设计工程师发现很难对这三个要求单独进行优化。最佳的解决方案取决于整个系统要求以及大小、成本或效率(运行时间)方面的综合要求。设计师有很多备选的电源拓扑结构:降压、低压差稳压器(LDO)和降压-升压,这些拓扑结构各有优缺点。   本文将向您揭示各种拓扑结构的优点和缺点,特别结合了常常在大多数便携式电源应用中用到的锂离子电池电压到3.3V电压轨转换。我们将解释降压-升压转换器的不同实现,并说明当涉及到降压-升压转换器时,“一种解决方案并不能满足所有要求。”   存在的问题   图1说明了锂离子电池到3.3V电压转换所面临的设
[电源管理]
用于便携式系统的<font color='red'>降压</font>-升压<font color='red'>转换</font>器
Diodes降压转换器提高便携式产品效率
Diodes公司 (Diodes Incorporated) 新推出的微型降压直流-直流转换器AP3403一般能够达到超过95%的高效率,有效延长智能手机及其它低压便携式产品的电池寿命。这款同步脉冲宽度调制转换器可驱动高达600mA的负载,并通过配置外部分压器丶电容器和电感器元件来保持高效率。 为了支持微型锂离子电池操作,新款降压转换器提供低至2.7V到5V的输入电压范围,空载电流仅34 A。该器件具有卓越的线性及负载调节功能,并利用电流模式控制提供最快的瞬态响应及逐周期电流限制。 AP3403在有助于减小纹波的固定2MHz下操作,所以能够缩减外部电路元件的尺寸并节省成本。器件采用了高效散热
[电源管理]
在反相降压-升压拓扑中使用降压转换
  引言   大多数实际的电子设备都要求有一个输入电压源。其可以是针对手持或便携式设备的电池、 针对家庭消费类电子产品的 115-V AC 线压源或壁式电源,也可以是针对工业或电信应用 的一个稳压 DC 电压总线。一般而言,输入电压源必须被转换为一个或多个低电压源,以 为诸如处理器、存储器、FPGA 或其他逻辑电路等单独的电路供电。降压转换器通常用来从 较高的电压源获得所需的输入电压。在某些应用中,可能需要从正输入电压源生成一个负 电压,此类应用包括音频放大器、线路驱动器及接收机或仪表放大器。在此类情况下,将 降压转换器配置成一个反相降压-升压拓扑结构(该拓扑结构的输出电压相对接地而言为 负)是有可能实现的。   基本
[电源管理]
低功耗待机的高电压电流模式降压转换
电池供电型系统通常都伴随着低功耗待机要求。例如汽车系统往往要求电源即使在无负载条件下也能够保持输出电压调节,并消耗极小的静态电流,以延长电池的使用寿命。然而,不断上涨的能源成本增加了人们对交流供电型系统(比如用于家庭和企业的小型插入式电器)实现低电流待机操作的需求。 在那些需要高输入电压和巨大负载电流的系统中,设计一个可在轻负载条件下具有高效率的电源尤其困难。在此类高功率系统中,一种常用的方法是增设一条用于低电流操作的辅助电源路径,这种做法有可能显著地增加电源的成本、板级空间和复杂性。 采用LT3800作为单电源同步DC/DC转换器的核心是一种更加优越的解决方案。由此形成的电源简单而高效。基于LT3800的转换器所需的外
[应用]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved