开环增益加大,稳态误差减小,fc增大,过渡过程缩短,系统稳定性变差。
这种很少很少用。
改进一下,PI调节:消除静差。打个比方,就是431的R和K之间放置2个元件,R串C。
好处就是提供了负的相角,因为有了一个极点一个零点。极点在0点。
使得相角裕量减小
所以,降低了系统的相对稳定性。
但是,穿越频率fc有所增加。
PD调节。这个用的不多。PD调节增大了系统的fc,导致系统响应加快,相位裕量增加。高频时有噪声。
PID调节:低频时PI,高一点时PD调节。
低频时提升静态性能,高频时提升稳定性以及响应速度。
反激中用的比较多的是改进型PI,也就是type II和III
那么,理想的传函应该是什么样子:
1.低频段:高增益,以减小静差
2.中频段:fc附近,-20db,确保足够的相位裕量
3.高频段:增益要小,以降低开关谐波极其噪声的影响。
如果此时-40db下降都无法解决,那么,再加低通滤波器。
如果此时TYPE II不足以提供足够的相位裕量,那么,上TYPE III试试。
归纳一下:
低频段:稳态性能
中频段:动态性能
高频段:抗干扰性能
fc大,则快速性好,但是抗干扰能力下降
中频段最能反映系统的稳定性,快速性
P:粗调,就是直流增益。太大了就有可能震荡。就是当前值与给定值做差,放大
I:细调,将误差进行积分
D:预测功能,这个,可以看自控书。D大,就会产生毛刺。判断当前值变化趋势,及时作出调整,减小调节时间,提高响应速度。
有N多种调节办法,但是灵魂就是P肯定是有的,有没有I,D那就看实际情况了。实际上我们开关电源中就是用的改进型PI,也就是type II,type II.很少很少用到D。D,就是在电源输出的地方,串RC到2.5V参考那个脚,我们一般不这么搞。
至于改进型PI调节,自控书上都有讲解,我就不罗嗦了。
关于type II,type III,GOOGLE上大把大把。关于这方面的计算,也已经完全公式化了。
开关电源,主要也就用这2个补偿。其中typeIII用的还比较少。
我们平时调环路,主要就是调这个补偿电路。
我发一问:我们输出的是直流,采集的是直流。那为啥还用运放进行放大?
加RC干嘛?要补偿干嘛?这些与交流频率有关系的,与直流有啥关系?直流不是被电容给隔了吗?
那么如何回答上面的问题呢?
开关电源的模型,有三个入口:
1、参考输入 vref
2、输入母线电压vin
3、负载扰动Io
其中 2 和3 的变动,可以认为是交流的,反馈的目的,就是让输出电压在这些扰动情况下,依然稳定。
再谈一下PC817的作用:
PC817是线性光耦,集-射极的动态电阻由初级电流iF和集电极电流iC决定
iF利用三端可调稳压管TL431进行反馈控制.
输出电压升高
输出采样电阻,下面那一颗电压上升
TL431的VAK下降
iF上升
光耦次级VCE下降
如果2接地,1反馈接1脚
那么此时1脚电压下降
占空比D下降
输出电压下降。
所以稳定。
其实VCE与iF构成负反馈。就很好理解了。
此时,TL431接RC补偿,也就是TYPEII
对于光耦以及3842,2脚接地,光耦射极也接地。
从8脚拉一颗1K或者稍大的电阻拉到光耦集电极。将这个反馈信号直接拉到1脚。
反馈就完成了。
至于1,2脚之间,可以接一个pf级别的电容。不能太大。
上一篇:初次设计反激电源式电源步骤
下一篇:基于DSP无差拍控制的逆变电源研究
推荐阅读最新更新时间:2023-10-18 15:42
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况
- 下载是德科技精选解决方案,抽奖赢好礼!
- 有奖直播:升升不息,瑞萨MCU的固件升级方案
- 有奖话题:聊一聊论坛里帮助过你的网友!
- 【泰有聊】系列技术文章连载1:示波器“芯”升级,聊一聊TEK061/041 ASIC创新平台
- 有奖报名 | 安富利邀您参与2022国际工业博览会!(11月30日-12月4日,上海)
- 提交WEBENCH设计,就能参与转盘抽奖!
- 下载应用文章有礼啦!新方案新标准:助你克服第四代I/O应用中的接收机测试挑战!
- 有奖调查:ST MEMS 传感器论坛用户问卷调查,参与有惊喜
- 有奖直播|恩智浦LPC553x在双电机控制中的应用
- 艾睿电子&ADI有奖直播:无需光耦的flyback隔离电源设计