升压型DC-DC变换器电流环路补偿设计

最新更新时间:2011-09-26来源: 互联网关键字:斜坡补偿  电流采样  电流模式  V/I转换 手机看文章 扫描二维码
随时随地手机看文章

  摘要:针对固定频率峰值电流模式PWM升压型DC-DC变换器。给出了一种结构简单、易于集成的电流环路补偿电路的设计方法。该电路的斜坡产生电路可对片内振荡器充放电电容上的电压作V/I转换,其所得到的斜坡电流具有稳定、斜率易于调节等特点;而电流采样电路主体采用SENSEFET结合优化的缓冲级和V/I转换电路,从而在提高采样精度的同时,还减小了损耗。整个电路可采用0.6 μm 15 V BCD工艺实现。通过Cadence Spectre进行的仿真结果表明,该电路可有效地抑制亚谐波振荡,采样精度达到77.9%,补偿斜率精度达到81.5%。
关键词:斜坡补偿;电流采样;电流模式;V/I转换

O 引言
    固定频率峰值电流模式PWM(Pulse WidthModulation) DC-DC变换器同传统的电压模式控制相比,具有瞬态响应好,输出精度高,带载能力强等优点,因而被广泛应用。作为重要的模拟单元,斜坡补偿电路和电流采样电路是电流模式PWM控制的根基,对电流模式控制中电流环路的稳定性起着重要作用。

1 电路结构
    图1所示是典型峰值电流模式PWM Boost DC-DC控制系统的结构框图。当电压外环的电压反馈信号经过误差放大器放大得到的误差信号VE送至PWM比较器后,将与电流内环的一个变化的、其峰值代表输出电感电流峰值的三角波或梯形尖角状合成波信号VE比较,从而得到PWM脉冲关断阈值。即:
   
    在(1)式中:第一项为斜坡补偿部分,用于保证电流环路的稳定;第二项反映了电感电流的大小,通常由电流采样电路产生;第三项用于产生一个固定的基础电平,以为PWM比较器输入端图1 典型峰值电流模式PWMBoostDC—DC控制系统框图提供一个合适的直流工作点。
    因此,峰值电流模式控制不是用电压误差信号直接控制PWM脉冲宽度,而是通过控制峰值输出端的电感电流大小,然后来间接地控制PWM脉冲宽度。


    但是,电流模式的结构决定了其应用时存在电流内环在占空比大于50%时的开环不稳定现象、亚谐波振荡、非理想的环路响应,以及容易受噪声影响等几个固有缺点。针对上述问题,在环路的补偿方式上,除了电压环路的RC串联补偿之外,还必须对电流环路进行补偿,以满足电流环路的稳定性要求。有效的解决方法是采用斜坡补偿技术,并在提高电流采样精度的同时降低采样损耗,以保证电流环路的稳定。

本文利用对振荡器充放电电容上的电压作V/I转换来得到稳定且斜率易于调节的补偿斜坡,同时采用功率SENSEFET作为采样器件,并结合设计简洁的V/I变换,使采样系数不受温度和工艺的影响,从而在得到较高精度采样值的同时,还减低了损耗。

2 电路原理分析
2.1 斜坡补偿
    图2给出了在误差信号VE上叠加斜坡补偿电压的方法。VE为电压反馈回路的误差放大信号,实线波形为未加扰动的电感电流,虚线为叠加△I0扰动量的电感电流,D为占空比,m1、m2分别为采样得到的等效电感电流的上升和续流斜率。


    由图2(a)、(b)可知,若没有斜坡补偿,在下一个周期,该扰动电流为:
   
    而经过n个周期后,由△I0引起的电流误差△In为:
   
    由式(3)可以看出,当m2m1,即D>50%时,电流误差△In将逐渐放大,从而导致系统不稳定。
    图2(c)是D>50%时,叠加补偿电压后的电感电流波形。对于该波形,有:
   
    显然,要使环路稳定,必须使△I1<△Io,即满足:
    
    结合(5)和(6)两个式子可以得到:
   
    由此可见,当时,可在最坏情况下(D=100%,即m2>>m1)满足系统的开环稳定性要求。
    图1所示的电路同时给出了在电流反馈电压上叠加斜坡补偿电压的方法。通过比较分析可知,两种补偿方法在效果上是等效的,但是第二种方法中的电路实现相对更简单,因此较为常用。

2.2 电流采样原理与方法
    传统电流采样方法是在开关管的电流通路上串接检测电阻,这样不仅降低了DC-DC转换器的效率,而且对于传统工艺来说,制作这样的小电阻也很困难。为了弥补这些不足,本文在SENSEFET采样方法的基础上,加入了简洁的V/I变换电路,从而形成了一种结构简单且精度较高的采样电路,其电路主体如图l中的采样电路所示。其中MM为POWER FET,其宽长比设计的非常大,可以减小其导通阻抗(本电路的典型值为150 mΩ);Ms为SENSE FET;检测电阻RSEN可利用工作在线性区MOS管的导通阻抗特性,使其宽长比与Ms相同,因此,导通阻抗与Ms的相等,记为RSEN。为了减小采样损耗,一般必须使(W/L)MM<<(W/L)Ms。
    设(W/L)Ms:(W/L)MM=n(n的取值一般不低于100),开关管电流为IM,则有:
    
    采样电压VSEN经过简洁实用的V/I转换电路后,可将其转换成所需要的采样电流信号ISEN,然后与斜坡电流信号ISLOPE在R∑进行叠加,就可得到所需的电压V∑。

3 改进型电路设计
3.1 斜坡产生电路
    图3所示是一种改进型斜坡产生电路,图中,MP5、MP6为匹配的差分对管:Q1、Q2匹配(rCE(Q1)=rCE(Q2),为负载管,它们的发射极面积相等,为Q3的两倍。负载管Q1、Q2采用三极管,可在高匹配性的同时大大减小噪声影响。在Q2的集电极与基极之间加一个射极输出的晶体管Q4,可以减小Q2和Q3基极电流对ID(MP6)的分流;而在Q2和Q3的基极与地之间加电阻R4,则可用来提高Q4的β。Vc为片内振荡器充放电电容上的锯齿波电压,Vc的变化范围为V1-V2。其中V2和V1分别为振荡器充放电的高、低设定电压值。


    此电路主要任务是将电容上的锯齿波电压转换成所需要的斜坡电流。
3.2电流采样电路
    图4所示为本系统中的电流采样电路。该电流采样电路由三部分组成:采样电路、缓冲级电路和电压/电流(V/I)转换电路。其中采样电路采样得到反映电感电流的电压VSEN后,可经过优化处理的缓冲级电路进行电平平移,从而得到VSEN’,以避免采样电压受到后级电路的影响,即:
   


    最后,VSEN’经过V/I转换电路,就可以转换成所需要的电流信号ISEN,以便和ISLOPE进行叠加。

   因为图4中的Q1和Q2匹配,偏置相同,所以Q1和Q2的发射极电压近似相等,即:V2≈V3,因而可为v∑提供一个合适的直流电平。

4 仿真结果
    采用0.6μm BCD工艺时,可对设计的电路进行仿真验证。仿真条件为供电电压VIN=5 V,输出电压VOUT=13 V,负载电流为500 mA。由仿真条件可知,占空比D>50%,但必须引入斜坡补偿以保证电流环路的稳定。
    图5所示是整体电路在典型情况下(D>50%),加入斜坡补偿的仿真波形。其中,图5(a)是电感实际的电流波形。其电感电流峰值为Iinductor_PEAK=1.796 A;图5(b)是采样得到的电感电流波形,其采样电感电流峰值为Isensc_PEAK=10.505μA。


    由于设计中的典型值R2=R3=10 kΩ,RDS(MM)=150 mΩ,RDS(MS)=15 Ω,n=100,故其电流采样系数α为:7.5x10-6,采样精度为77.9%。
    图5(c)是斜坡补偿电路产生的斜坡电流波形,实测的补偿斜坡的斜率为5.487 A/s,时钟CLK为1.2 MHz,占空比为85.7%,T1=685.563 ns。由于本设计中的典型值为:V1=0.4 V,V2=1 V,R=65 kΩ。
    故可得其补偿斜坡的斜率为:m=6.732 A/s。
    因此可知,本设计的补偿斜坡已经达到较高精度(81.5%),可以满足设计要求;
    图5(d)是电感电流采样值与补偿斜坡的合成波形。可以看出,其斜坡补偿的加入有效的抑制了亚谐波振荡。

5 结束语
    本文针对峰值电流模式DC-DC转换器固有的不稳定性,设计了斜坡补偿电路。采用固定斜率补偿技术,虽然在小占空比条件下会减弱电流模式PWM控制的优点,但其电路结构简单,容易调节,可降低设计难度,同时针对一般的便携式设备,完全可以满足应用要求;而电流采样电路使用SENSE FET,同时结合缓冲级和V/I转换电路,可在采样精度得到提高的同时减小损耗。因此,本设计中的两个V/I转换电路可以较好地移植到其它DC-DC变换器电路中。
    目前,本电路已经应用在一款升压型DC-DC芯片中,并且已经完成了前期仿真。仿真结果达到了预期要求,证明了该电路的可行性。

关键字:斜坡补偿  电流采样  电流模式  V/I转换 编辑:冰封 引用地址:升压型DC-DC变换器电流环路补偿设计

上一篇:抽头式电感器提高离线降压转换器的性能
下一篇:DC/DC转换器的发热问题缘由

推荐阅读最新更新时间:2023-10-18 15:49

Maxim推出有源钳位、电流模式PWM控制器
Maxim推出采用有源钳位架构和扩频工作方式的高频、电流模式PWM控制器MAX5974。器件的有源钳位架构能够提供大于90%的效率,有效降低用于IEEE® 802.3af/at用电设备(PD)的同步正向/反激式电源的功耗。MAX5974A/MAX5974C非常适合通用整流离线式(85V至265V)或电信(36V至72V)输入电压。MAX5974B/MAX5974D还可接受低至10.5V的输入电压(例如:墙上适配器)。器件的目标应用包括IP电话、IP摄像机和无线LAN接入点等PoE PD。MAX5974还适用于通用和电信输入电压范围。 MAX5974A/MAX5974B具有内部采样保持误差放大器,通过耦合
[模拟电子]
Maxim推出有源钳位、<font color='red'>电流模式</font>PWM控制器
电流模式控制DC/DC转换器中的电流检测电路设计
电流检测电路是电流模式控制所必需的, 通过检测功率开关管上的电流,然后输出一个电流感应信号与斜坡补偿信号进行叠加并转换成一个电压信号, 再与误差放大器的输出进行比较,从而实现电流模式开关转换器电流内环的控制。其实现方法有很多种, 常见的有两种,一种是与功率管串联一个电阻Rsen,另一种是与功率管并联一个并联检测管复制比例电流, 并联检测管复制比例电流的检测方法,又有两种主要的实现结构, 一种是采用运放的结构, 另一种是利用反馈的方式。如果采用运放, 显然会增加电路的复杂性,而且也会增加功耗。本文根据具有反馈控制电流源的原理来设计电流检测电路中的反馈网络。 1 反馈控制电流源的原理 电路原理图及电流源动态特性曲线如
[测试测量]
<font color='red'>电流模式</font>控制DC/DC<font color='red'>转换</font>器中的电流检测电路设计
低启动电流、宽 VIN 范围、电流模式升压型/反激式/SEPIC DC/DC 控制器
2007 年 4 月 25 日 - 北京 - 凌力尔特公司( Linear Technology Corporation )推出电流模式 PWM 控制器 LTC3873 ,该器件减小了反激式、升压型和 SEPIC 电源的尺寸,并降低了复杂性。这个器件含有设计额定功率高达 25W 的高效率单端隔离和非隔离反激式转换器所必需的所有功能,这类转换器用于电信、网络设备、以太网供电( P o E )、汽车、消费电子产品和普通家用电源。 LTC3873 非常适用于启动时输入可能从 9V 变化到 75V 的宽输入电压范围应用,该器件在启动后将在 4V 至 75V 范
[新品]
MAX5974宽输入电压范围、有源钳位、电流模式PWM控
MAX5974_为宽输入电压范围、有源钳位、电流模式 PWM控制器 ,为以太网供电(PoE)中的用电设备(PD)提供正激变换。MAX5974A/MAX5974C适用于通用或电信系统的输入电压范围,MAX5974B/MAX5974D则可用于低至10.5V的输入电压。   器件包含几个特性,有助于提高电源效率。AUX驱动器可重复利用电感中的电流,而不是将其损耗在钳位电路上。AUX与主驱动器之间的可编程死区时间可实现零电压切换(ZVS)。在轻载条件下,器件降低开关频率(频率折返)以减小开关损耗。   MAX5974A/MAX5974B独特的电路设计能够在不需要光耦的前提下获得稳定的输出,MAX5974C/MAX5974D则采
[电源管理]
MAX5974宽输入电压范围、有源钳位、<font color='red'>电流模式</font>PWM控
伺服驱动器中电流采样电路设计
在伺服驱动控制系统中,为实现磁场定向控制,需要至少对两相电机绕组的电流进行采样,这两路电流采样将作为电流反馈信号使伺服驱动实现电流闭环,可以这样说,电流信号采样是伺服控制系统硬件的一个重要模块,也是一大难点。   常规电流采样电路设计   如今,大多数伺服驱动使用采样电阻和线性光耦搭建的一路电流采样电路,如图1所示。   其中,rsense是功率型采样电阻,mc34081为运算放大器,78l05为三端稳压电源。hcpl-7840为线性光耦,其2,3引脚为信号输入端,6,7引脚为信号输出端,在输入端输出端供电电压均为5v的情况下,当2,3引脚输入的差值电压变化时,6,7引脚的输出信号将随着输入信号分别进行递增和递减的线
[电源管理]
伺服驱动器中<font color='red'>电流采样</font>电路设计
电源变换器中电流模式和电压模式相互转化
目前,电压模式和电流模式是 开关电源 系统中常用的两种控制类型。通常在讨论这两种工作模式的时候,所指的是理想的电压模式和电流模式。电流模式具有动态响应快、稳定性好和反馈环容易设计的优点,其原因在于电流取样信号参与反馈,抵消了由电感产生的双极点中的一个极点,从而形成单阶的系统;但正因为有了电流取样信号,系统容易受到电流噪声的干扰而误动作。电压模式由于没有电流取样信号参与反馈,系统也就不容易受到电流噪 声的干扰。  然而,在实际的应用中,通常看似为电压模式的开关电源系统,即系统没有使用电流取样 电阻 检测电流信号,但也会采用其它的方式引入一定程度的电流反馈,从而提高系统动态响,如:利用输出电容 ESR 取样
[电源管理]
电源变换器中<font color='red'>电流模式</font>和电压模式相互转化
一种用于线性稳压器LDO的限流电路
1 引 言   目前伴随着便携移动设备的快速 发展, 电源芯片得到更广泛的应用, LDO 芯片即是一种重要的电源芯片。但在发生输出短路或负载电流过大的情况, LDO稳压器可能会损坏, 特别是在短路情况下,LDO存在过大的电流从调整管通过, 进而可能烧坏调整管致使芯片无法工作。因此需要设计一种用于LDO稳压器的限流电路 , 能在过载或短路情况下及时关闭电源系统。    2 电路结构   这种限流电路的主要结构包括: 电流采样电路、电流比较电路和基准源电路。如图1 所示, 它将从LDO输出电路得到的采样电流, 与基准电流(镜像于基准源) 作比较。根据实际需要, 设定当输出驱动电流大于100mA 时, 采样电流大
[电源管理]
基于模拟电流模式的SIMPLE SWITCHER稳压器
现在,对电源功耗、效率、外型尺寸、成本、上市时间等提出更高和更苛刻的要求,而设计裕量越来越少、往往在设计的最后阶段还要修改设计,这使得电源系统必须采用更先进的技术。为此,美国国家半导体公司推出6款全新的高性能、设计灵活、容易使用的SIMPLE SWITCHER高频降压稳压器,同时为了使新产品获得更好的设计支持,该公司进一步加强WEBENCH设计工具的内容,使用户在更理想的设计支持下迅速完成DC/DC电源系统的设计。    全新的SIMPLE SWITCHER高频降压稳压器 6款新型号SIMPLE SWITCHER稳压器具有下列特性:   *宽输入电压范围(6V~75V);   *输出电压最低可达1.225V;   
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved