在一般开关电源的设计方案中,开关损耗和器件的导通损耗(特别是整流器件的导通损耗)是困扰开关电源设计者的一大难题。当效率达到一定程度后,再进一步提高效率深感困难,甚至无从下手。尽管采用了有源箝位、移相零电压开关、同步整流器等先进的,使电源效率得到一些提高,但是所付出的代价也是很大的。能在用常规的电路拓扑基础上加以改进,得到所希望的高效率,是当今电源设计的热点和最经济的方案。为实现这一目标通常的设计手段很难达到的,欲实现并超过这一目标必须明确各部分的损耗,并设法减小甚至消除其中的某些损耗。
1 损耗及效率分析
开关电源的损耗基本上有以下几个构成:输入电路损耗、主开关的导通损耗和开关损耗、控制电路损耗、变压器损耗、输出整流器损耗。
1.1 输入电路损耗
主要有电源滤波器的寄生电阻上的损耗,通常在输入功率的百分之零点几,实际上几乎没有温升,故可以忽略不计;限制浪涌电流的负温度系数热敏电阻上的损耗,通常不到输入功率的1%;输入整流器损耗,约输入功率的1%。整个输入电路损耗约输入功率的1%-1.5%。以上损耗一般无法进一步减小。
1.2 主开关上的损耗
主开关上的损耗可分为导通损耗和开关损耗,交流输入电压范围在85V~264V时,以85V的开关管导通损耗最高,在264V时开关损耗最高。在各种电路拓扑中反激式变换器的开关损耗和导通损耗最高,以尽可能不采用为好。单端正激(包括双管箝位电路拓扑)因其最大占空比不会大于0.7也尽可能不采用为好。惟有桥式(全桥与半桥)和推挽电路拓扑有可能实现高效率功率变换。但是,欲明显减小甚至消除开关损耗并且不附加缓冲(谐振)电路,同时采用简单、常规的PWM控制方式是实现高效功率变换的目标。
电源界的一个不成文的观点:不稳压的比稳压的效率高、不隔离的比隔离的效率高、窄范围输入电压的比宽范围输入的效率高。基于这种观点,不调节的隔离变换器的开关管可以工作在占空比几乎为50%,变换器在输出相同功率时的电流最小,而且自然地形成了零电压开关,因此效率最高,输出电压的稳定可以由必不可少的功率因数校正级完成,PFC+不调节的隔离变换器(DC变压器)。
1.3 变压器电感的损耗
这一损耗约占输人功率的1~2%。
1.4 输出整流器损耗
通常输出整流器的导通损耗(特别是低电压输出时)占整机损耗的很大比重。在12V以上的输出电压需要选用耐压200V以上的超快速二极管作为输出整流器,其导通电压约1.2~1.4V,在输出分别为12、24、48V时输出整流器的效率(不考虑开关损耗)分别为(以导通电压l.3V计):不会高于90.26%、94.8%、97.6%。以上综合起来,采用常规技术尽管可以使电源效率达到或超过90%,而且,即使在较高的输出电压时,整流器的导通损耗仍然是整机损耗中几乎是最大的。如有可能,采用肖特基二极管(导通压降分别为:0.3V、0.4V、0.7V)则这一级的效率分别为:96.1%、98.3%、98.5%,则这部分损耗可以降低50%以上。
1.5 体积分析
由于开关管和输出整流器需要散热器,使结构设计变得复杂,开关管和整流器上的损耗减小将减小甚至可以不用散热器,既简化结构设计有减小体积。
2 高效实现方案的思路与分析
提高效率可以采用软开关、同步整流器等技术(电率将复杂化、成本将提高),即使如此,开关管的导通损耗很难进一步减小,常规技术的功率变换很难做得非常高,整机效率达到90%以上也不是容易的事。而且将来的开关电源必须符合有关功率因数的相关标准,因此一般需要加PFC。因此作者提出一种基于常规技术使效率超过93%的开关电源的解决方案。并完成样机及测试。
2.1 解决方案的思路
在效率方面,非稳压高于稳压、非隔离型高于隔离型、窄电压范同高于宽电压范围,因此高效解决方案可以考虑如下方案:PFC+非稳压半桥变换器+肖特基整流二极管。原理框图如图1。这是采用最常规的技术同时获得到最高的效率的实现方案。
2.2 临界电流型PFC
考虑电磁干扰及二极管的反向恢复造成的损耗等因素,小功率PFC宜采用临界电流型控制方式,本级可以采用MC33368或KA7524或其它适用于小功率输出的PFC控制IC。PFC除设置输出反馈以稳定输出电压外,设置PFC输出电压反馈防止输出反馈开路。正常工作时,仅输出反馈起作用,通过调节PFC输出电压稳定输出电压。
当PFC的输出电压为400V时,输出纹波电压分别为1%、3%所需的滤波电容器约为:1.2μF/W和0.4μF/W,在通常的滤波电容的选择容量范围内。因此,经过PFC的预稳定的作用,其输出电压的稳定程度基本符合应用要求,后面的可以仅完成隔离作用即可。
2.3 非稳压半桥变换器的零电压开关
由于PFC级具备稳压功能,故隔离级采用非稳压半桥变换器,以尽可能地提高整机效率,主回路如图2(a)。非稳压半桥变换器的两开关管分别可以工作在近50%占空比,这时不仅开关管的利用率最高,而且实现了零电压开关。变换器的最小死区时间仅受开关管的关断延迟的限制。当非稳压半桥变换器工作在这种状态下,Q2导通期间电流流向如图2(b)。当Q2由导通变为关断,变压器的漏感电流不能跃变,由于Q2的关断,变压器的漏感电流分别对Q2、Q3的源/漏寄生电容充/放电,使A点电压由电源电压的高电位转变为低电位,使与Q3反并联的二极管D3导通,提供变压器的漏感电流通路,形成了事实上的零电压关断,如图2(c)。当变压器的漏感电流降到零前,使Q3导通(由于死区时间不到1μs,很容易满足),使Q3在“零电压”导通,如图2(d)。Q3关断、Q2导通的过程与上述描述相同,不再赘述,从而实现了“零电压”开关,使开关管的损耗几乎仅为导通损耗。本文的应用实例中,Q2、Q3选用IRFR320结温为100℃时的导通电阻为3Ω,满载时的工作电流约为300mA,导通压降为lV,占电源电压的0.25%。这样半桥的两个开关管的损耗可以小于整机输入功率的1%。隔离变压器由于工作在特定的工作状态,因而,其效率也非常高,大约为整机输入功率的1%。
2.4 肖特基整流二极管
由于隔离级开关管的占空比接近100%(98%),不仅流过输出整流器的电流的有效值最小,而且,输出级全波整流器的耐压仅需输出电压的2倍,对于输出为24V输出,完全可以选用耐压60V的肖特基整流二极管即可满足要求,而耐压60V的肖特基整流二极管的导通压降(大幅度降额使用,约0.2倍额定电流)可以达0.35V甚至0.3V以下。这样本级效率实际可达约97~98%。
3 实验数据及分析
测试设备:FLUKE F105B示波表、C64系列电流表、电压表、瓦特表。输入电压在85V时的电源效率约93%,输入电流波形和谐波分析如图3。功率因数不低于0.99;非稳压半桥变换器的开关管源、漏电压波形如图4,输出电压纹波如图5,输出电压尖峰在70mV左右;负载调整率小于1%。
与正激变换器相比本文提出的电路拓扑的电感、电解电容器的数量是相同的;由于少一个输出滤波电感,比具有PFC的正激变换器简单;所有功率器件无散热器,可直接帖焊在PCB上使体积明显减小,因此,在环境温度为30℃时PFC的提升电感、开关管、提升二极管和半桥变换器的开关管、变压器、输出整流二极管由于实际损耗很低,故温度均在55~6l℃,均不高于60℃。即使在塑壳封闭环境下的最高温度不高于90℃,其管芯和绕组内的最高温度将不高于110℃。
在输出整流器采用二极管整流的方案,使整机效率在输出20~24V时全电压范围输入电压并且带有PFC功能时的效率超过90%是一个高效、廉价的开关电源的解决方案。
上一篇:DC/DC变换器在汽车照明中的应用方案
下一篇:移相控制全桥ZVS-PWM变换器的分析与设计
推荐阅读最新更新时间:2023-10-18 15:51
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- CGD和Qorvo将共同革新电机控制解决方案
- 是德科技 FieldFox 手持式分析仪配合 VDI 扩频模块,实现毫米波分析功能
- 贸泽开售可精确测量CO2水平的 英飞凌PASCO2V15 XENSIV PAS CO2 5V传感器
- 玩法进阶,浩亭让您的PCB板端连接达到新高度!
- 长城汽车研发新篇章:固态电池技术引领未来
- 纳芯微提供全场景GaN驱动IC解决方案
- 解读华为固态电池新专利,2030 叫板宁德时代?
- 让纯电/插混车抓狂?中企推全球首款-40℃可放电增混电池,不怕冷
- 智驾域控知多少:中低端车型加速上车,行泊一体方案占主体
- Foresight推出六款先进立体传感器套件 彻底改变工业和汽车3D感知